Step * 2 of Lemma Kan_id_filler_wf


1. CubicalSet
2. {X ⊢ _(Kan)}
3. {X ⊢ _:Kan-type(A)}
4. {X ⊢ _:Kan-type(A)}
5. Kan_id_filler(X;A;a;b) ∈ I:(Cname List)
   ⟶ alpha:X(I)
   ⟶ J:(nameset(I) List)
   ⟶ x:nameset(I)
   ⟶ i:ℕ2
   ⟶ A-open-box(X;(Id_Kan-type(A) b);I;alpha;J;x;i)
   ⟶ I-path(X;Kan-type(A);a;b;I;alpha)
⊢ Kan_id_filler(X;A;a;b) ∈ {filler:I:(Cname List)
                            ⟶ alpha:X(I)
                            ⟶ J:(nameset(I) List)
                            ⟶ x:nameset(I)
                            ⟶ i:ℕ2
                            ⟶ A-open-box(X;(Id_Kan-type(A) b);I;alpha;J;x;i)
                            ⟶ (Id_Kan-type(A) b)(alpha)| 
                            Kan-A-filler(X;(Id_Kan-type(A) b);filler)} 
BY
Assert ⌜Kan_id_filler(X;A;a;b) ∈ I:(Cname List)
          ⟶ alpha:X(I)
          ⟶ J:(nameset(I) List)
          ⟶ x:nameset(I)
          ⟶ i:ℕ2
          ⟶ A-open-box(X;(Id_Kan-type(A) b);I;alpha;J;x;i)
          ⟶ (Id_Kan-type(A) b)(alpha)⌝⋅ }

1
.....assertion..... 
1. CubicalSet
2. {X ⊢ _(Kan)}
3. {X ⊢ _:Kan-type(A)}
4. {X ⊢ _:Kan-type(A)}
5. Kan_id_filler(X;A;a;b) ∈ I:(Cname List)
   ⟶ alpha:X(I)
   ⟶ J:(nameset(I) List)
   ⟶ x:nameset(I)
   ⟶ i:ℕ2
   ⟶ A-open-box(X;(Id_Kan-type(A) b);I;alpha;J;x;i)
   ⟶ I-path(X;Kan-type(A);a;b;I;alpha)
⊢ Kan_id_filler(X;A;a;b) ∈ I:(Cname List)
  ⟶ alpha:X(I)
  ⟶ J:(nameset(I) List)
  ⟶ x:nameset(I)
  ⟶ i:ℕ2
  ⟶ A-open-box(X;(Id_Kan-type(A) b);I;alpha;J;x;i)
  ⟶ (Id_Kan-type(A) b)(alpha)

2
1. CubicalSet
2. {X ⊢ _(Kan)}
3. {X ⊢ _:Kan-type(A)}
4. {X ⊢ _:Kan-type(A)}
5. Kan_id_filler(X;A;a;b) ∈ I:(Cname List)
   ⟶ alpha:X(I)
   ⟶ J:(nameset(I) List)
   ⟶ x:nameset(I)
   ⟶ i:ℕ2
   ⟶ A-open-box(X;(Id_Kan-type(A) b);I;alpha;J;x;i)
   ⟶ I-path(X;Kan-type(A);a;b;I;alpha)
6. Kan_id_filler(X;A;a;b) ∈ I:(Cname List)
   ⟶ alpha:X(I)
   ⟶ J:(nameset(I) List)
   ⟶ x:nameset(I)
   ⟶ i:ℕ2
   ⟶ A-open-box(X;(Id_Kan-type(A) b);I;alpha;J;x;i)
   ⟶ (Id_Kan-type(A) b)(alpha)
⊢ Kan_id_filler(X;A;a;b) ∈ {filler:I:(Cname List)
                            ⟶ alpha:X(I)
                            ⟶ J:(nameset(I) List)
                            ⟶ x:nameset(I)
                            ⟶ i:ℕ2
                            ⟶ A-open-box(X;(Id_Kan-type(A) b);I;alpha;J;x;i)
                            ⟶ (Id_Kan-type(A) b)(alpha)| 
                            Kan-A-filler(X;(Id_Kan-type(A) b);filler)} 


Latex:


Latex:

1.  X  :  CubicalSet
2.  A  :  \{X  \mvdash{}  \_(Kan)\}
3.  a  :  \{X  \mvdash{}  \_:Kan-type(A)\}
4.  b  :  \{X  \mvdash{}  \_:Kan-type(A)\}
5.  Kan\_id\_filler(X;A;a;b)  \mmember{}  I:(Cname  List)
      {}\mrightarrow{}  alpha:X(I)
      {}\mrightarrow{}  J:(nameset(I)  List)
      {}\mrightarrow{}  x:nameset(I)
      {}\mrightarrow{}  i:\mBbbN{}2
      {}\mrightarrow{}  A-open-box(X;(Id\_Kan-type(A)  a  b);I;alpha;J;x;i)
      {}\mrightarrow{}  I-path(X;Kan-type(A);a;b;I;alpha)
\mvdash{}  Kan\_id\_filler(X;A;a;b)  \mmember{}  \{filler:I:(Cname  List)
                                                        {}\mrightarrow{}  alpha:X(I)
                                                        {}\mrightarrow{}  J:(nameset(I)  List)
                                                        {}\mrightarrow{}  x:nameset(I)
                                                        {}\mrightarrow{}  i:\mBbbN{}2
                                                        {}\mrightarrow{}  A-open-box(X;(Id\_Kan-type(A)  a  b);I;alpha;J;x;i)
                                                        {}\mrightarrow{}  (Id\_Kan-type(A)  a  b)(alpha)| 
                                                        Kan-A-filler(X;(Id\_Kan-type(A)  a  b);filler)\} 


By


Latex:
Assert  \mkleeneopen{}Kan\_id\_filler(X;A;a;b)  \mmember{}  I:(Cname  List)
                {}\mrightarrow{}  alpha:X(I)
                {}\mrightarrow{}  J:(nameset(I)  List)
                {}\mrightarrow{}  x:nameset(I)
                {}\mrightarrow{}  i:\mBbbN{}2
                {}\mrightarrow{}  A-open-box(X;(Id\_Kan-type(A)  a  b);I;alpha;J;x;i)
                {}\mrightarrow{}  (Id\_Kan-type(A)  a  b)(alpha)\mkleeneclose{}\mcdot{}




Home Index