Step
*
2
2
1
1
of Lemma
Kan_id_filler_wf
1. X : CubicalSet
2. A : {X ⊢ _(Kan)}
3. a : {X ⊢ _:Kan-type(A)}
4. b : {X ⊢ _:Kan-type(A)}
5. Kan_id_filler(X;A;a;b) ∈ I:(Cname List)
   ⟶ alpha:X(I)
   ⟶ J:(nameset(I) List)
   ⟶ x:nameset(I)
   ⟶ i:ℕ2
   ⟶ A-open-box(X;(Id_Kan-type(A) a b);I;alpha;J;x;i)
   ⟶ I-path(X;Kan-type(A);a;b;I;alpha)
6. Kan_id_filler(X;A;a;b) ∈ I:(Cname List)
   ⟶ alpha:X(I)
   ⟶ J:(nameset(I) List)
   ⟶ x:nameset(I)
   ⟶ i:ℕ2
   ⟶ A-open-box(X;(Id_Kan-type(A) a b);I;alpha;J;x;i)
   ⟶ (Id_Kan-type(A) a b)(alpha)
7. I : Cname List
8. alpha : X(I)
9. J : nameset(I) List
10. x : nameset(I)
11. i : ℕ2
12. bx : A-open-box(X;(Id_Kan-type(A) a b);I;alpha;J;x;i)
13. name-path-endpoints(X;Kan-type(A);a;b;I;alpha;fresh-cname(I);filler(x;i;cubical-id-box(X;Kan-type(A);a;b;I;...;bx)))
⊢ fills-A-open-box(X;(Id_Kan-type(A) a b);I;alpha;bx;Kan_id_filler(X;A;a;b) I alpha J x i bx)
BY
{ (Unfold `Kan_id_filler` 0
   THEN Reduce 0
   THEN MoveToConcl (-1)
   THEN (GenConclTerm ⌜filler(x;i;cubical-id-box(X;Kan-type(A);a;b;I;alpha;bx))⌝⋅
         THENA (Auto THEN D -2 THEN Unhide THEN EAuto 1)
         )) }
1
1. X : CubicalSet
2. A : {X ⊢ _(Kan)}
3. a : {X ⊢ _:Kan-type(A)}
4. b : {X ⊢ _:Kan-type(A)}
5. Kan_id_filler(X;A;a;b) ∈ I:(Cname List)
   ⟶ alpha:X(I)
   ⟶ J:(nameset(I) List)
   ⟶ x:nameset(I)
   ⟶ i:ℕ2
   ⟶ A-open-box(X;(Id_Kan-type(A) a b);I;alpha;J;x;i)
   ⟶ I-path(X;Kan-type(A);a;b;I;alpha)
6. Kan_id_filler(X;A;a;b) ∈ I:(Cname List)
   ⟶ alpha:X(I)
   ⟶ J:(nameset(I) List)
   ⟶ x:nameset(I)
   ⟶ i:ℕ2
   ⟶ A-open-box(X;(Id_Kan-type(A) a b);I;alpha;J;x;i)
   ⟶ (Id_Kan-type(A) a b)(alpha)
7. I : Cname List
8. alpha : X(I)
9. J : nameset(I) List
10. x : nameset(I)
11. i : ℕ2
12. bx : A-open-box(X;(Id_Kan-type(A) a b);I;alpha;J;x;i)
13. v : {cube:Kan-type(A)(iota(fresh-cname(I))(alpha))| 
         fills-A-open-box(X;Kan-type(A);[fresh-cname(I) / 
                                         I];iota(fresh-cname(I))(alpha);cubical-id-box(X;...;a;b;I;alpha;bx);cube)} 
14. filler(x;i;cubical-id-box(X;Kan-type(A);a;b;I;alpha;bx))
= v
∈ {cube:Kan-type(A)(iota(fresh-cname(I))(alpha))| 
   fills-A-open-box(X;Kan-type(A);[fresh-cname(I) / 
                                   I];iota(fresh-cname(I))(alpha);cubical-id-box(X;Kan-type(A);a;b;I;alpha;bx);cube)} 
⊢ name-path-endpoints(X;Kan-type(A);a;b;I;alpha;fresh-cname(I);v)
⇒ fills-A-open-box(X;(Id_Kan-type(A) a b);I;alpha;bx;<fresh-cname(I), v>)
Latex:
Latex:
1.  X  :  CubicalSet
2.  A  :  \{X  \mvdash{}  \_(Kan)\}
3.  a  :  \{X  \mvdash{}  \_:Kan-type(A)\}
4.  b  :  \{X  \mvdash{}  \_:Kan-type(A)\}
5.  Kan\_id\_filler(X;A;a;b)  \mmember{}  I:(Cname  List)
      {}\mrightarrow{}  alpha:X(I)
      {}\mrightarrow{}  J:(nameset(I)  List)
      {}\mrightarrow{}  x:nameset(I)
      {}\mrightarrow{}  i:\mBbbN{}2
      {}\mrightarrow{}  A-open-box(X;(Id\_Kan-type(A)  a  b);I;alpha;J;x;i)
      {}\mrightarrow{}  I-path(X;Kan-type(A);a;b;I;alpha)
6.  Kan\_id\_filler(X;A;a;b)  \mmember{}  I:(Cname  List)
      {}\mrightarrow{}  alpha:X(I)
      {}\mrightarrow{}  J:(nameset(I)  List)
      {}\mrightarrow{}  x:nameset(I)
      {}\mrightarrow{}  i:\mBbbN{}2
      {}\mrightarrow{}  A-open-box(X;(Id\_Kan-type(A)  a  b);I;alpha;J;x;i)
      {}\mrightarrow{}  (Id\_Kan-type(A)  a  b)(alpha)
7.  I  :  Cname  List
8.  alpha  :  X(I)
9.  J  :  nameset(I)  List
10.  x  :  nameset(I)
11.  i  :  \mBbbN{}2
12.  bx  :  A-open-box(X;(Id\_Kan-type(A)  a  b);I;alpha;J;x;i)
13.  name-path-endpoints(X;Kan-type(A);a;b;I;alpha;fresh-cname(I);filler(x;i;...))
\mvdash{}  fills-A-open-box(X;(Id\_Kan-type(A)  a  b);I;alpha;bx;Kan\_id\_filler(X;A;a;b)  I  alpha  J  x  i  bx)
By
Latex:
(Unfold  `Kan\_id\_filler`  0
  THEN  Reduce  0
  THEN  MoveToConcl  (-1)
  THEN  (GenConclTerm  \mkleeneopen{}filler(x;i;cubical-id-box(X;Kan-type(A);a;b;I;alpha;bx))\mkleeneclose{}\mcdot{}
              THENA  (Auto  THEN  D  -2  THEN  Unhide  THEN  EAuto  1)
              ))
Home
Index