Nuprl Lemma : FL-meet-0-1

[I:fset(ℕ)]. ∀[x:names(I)].
  (((x=0) ∧ (x=1) 0 ∈ Point(face_lattice(I))) ∧ ((x=1) ∧ (x=0) 0 ∈ Point(face_lattice(I))))


Proof




Definitions occuring in Statement :  fl1: (x=1) fl0: (x=0) face_lattice: face_lattice(I) names: names(I) lattice-0: 0 lattice-meet: a ∧ b lattice-point: Point(l) fset: fset(T) nat: uall: [x:A]. B[x] and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B fl1: (x=1) fl0: (x=0) face_lattice: face_lattice(I) squash: T prop: subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  fl-meet-0-1 names_wf names-deq_wf equal_wf squash_wf true_wf lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf fl1_wf fl0_wf iff_weakening_equal lattice_properties bdd-distributive-lattice-subtype-lattice fset_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_pairFormation applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality instantiate productEquality cumulativity because_Cache independent_isectElimination natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination independent_pairEquality axiomEquality isect_memberEquality

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[x:names(I)].    (((x=0)  \mwedge{}  (x=1)  =  0)  \mwedge{}  ((x=1)  \mwedge{}  (x=0)  =  0))



Date html generated: 2017_10_05-AM-01_11_00
Last ObjectModification: 2017_07_28-AM-09_29_59

Theory : cubical!type!theory


Home Index