Nuprl Lemma : case-term-0'

[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma ⊢ _}]. ∀[u:Top]. ∀[v,x:{Gamma ⊢ _:A}].
  (Gamma ⊢ (u ∨ v)=x:A) supposing ((x v ∈ {Gamma ⊢ _:A}) and (phi 0(𝔽) ∈ {Gamma ⊢ _:𝔽}))


Proof




Definitions occuring in Statement :  case-term: (u ∨ v) same-cubical-term: X ⊢ u=v:A face-0: 0(𝔽) face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x] top: Top equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a squash: T subtype_rel: A ⊆B prop: same-cubical-term: X ⊢ u=v:A true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  case-term-0 same-cubical-term_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j equal_wf iff_weakening_equal face-0_wf cubical-term_wf istype-top cubical-type_wf face-type_wf cubical_set_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination applyEquality instantiate lambdaEquality_alt imageElimination because_Cache sqequalRule hyp_replacement equalitySymmetry equalityTransitivity natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination axiomEquality equalityIstype inhabitedIsType isect_memberEquality_alt isectIsTypeImplies universeIsType

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[u:Top].  \mforall{}[v,x:\{Gamma  \mvdash{}  \_:A\}].
    (Gamma  \mvdash{}  (u  \mvee{}  v)=x:A)  supposing  ((x  =  v)  and  (phi  =  0(\mBbbF{})))



Date html generated: 2020_05_20-PM-04_15_03
Last ObjectModification: 2020_04_10-PM-03_46_40

Theory : cubical!type!theory


Home Index