Nuprl Lemma : case-term-wf3
∀[Gamma:j⊢]. ∀[phi,psi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma, (phi ∨ psi) ⊢ _}]. ∀[v:{Gamma, psi ⊢ _:A}].
∀[u:{Gamma, phi ⊢ _:A[psi |⟶ v]}].
  ((u ∨ v) ∈ {t:{Gamma, (phi ∨ psi) ⊢ _:A}| Gamma, psi ⊢ t=v:A} )
Proof
Definitions occuring in Statement : 
case-term: (u ∨ v)
, 
same-cubical-term: X ⊢ u=v:A
, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
, 
context-subset: Gamma, phi
, 
face-or: (a ∨ b)
, 
face-type: 𝔽
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
, 
same-cubical-term: X ⊢ u=v:A
, 
and: P ∧ Q
Lemmas referenced : 
context-subset-subtype-or, 
constrained-cubical-term_wf, 
cubical-type-cumulativity2, 
context-subset_wf, 
subset-cubical-term, 
context-subset-is-subset, 
face-type_wf, 
subset-cubical-term2, 
context-iterated-subset1, 
context-subset-subtype-or2, 
cubical-term_wf, 
cubical_set_cumulativity-i-j, 
cubical-type_wf, 
face-or_wf, 
cubical_set_wf, 
case-term_wf2, 
case-term-equal-right, 
face-and_wf, 
sub_cubical_set_transitivity, 
context-iterated-subset, 
context-subset-swap, 
subset-cubical-type, 
sub_cubical_set_functionality2, 
face-term-implies-subset, 
face-term-implies-or2, 
same-cubical-term_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
dependent_set_memberEquality_alt, 
universeIsType, 
cut, 
hypothesisEquality, 
applyEquality, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
hypothesis, 
sqequalRule, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
setElimination, 
rename, 
independent_pairFormation, 
productElimination
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi,psi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma,  (phi  \mvee{}  psi)  \mvdash{}  \_\}].  \mforall{}[v:\{Gamma,  psi  \mvdash{}  \_:A\}].
\mforall{}[u:\{Gamma,  phi  \mvdash{}  \_:A[psi  |{}\mrightarrow{}  v]\}].
    ((u  \mvee{}  v)  \mmember{}  \{t:\{Gamma,  (phi  \mvee{}  psi)  \mvdash{}  \_:A\}|  Gamma,  psi  \mvdash{}  t=v:A\}  )
Date html generated:
2020_05_20-PM-03_12_33
Last ObjectModification:
2020_04_07-PM-00_52_07
Theory : cubical!type!theory
Home
Index