Nuprl Lemma : context-iterated-subset

[Gamma:j⊢]. ∀[phi,psi:{Gamma ⊢ _:𝔽}].
  (sub_cubical_set{j:l}(Gamma, (phi ∧ psi); Gamma, psi, phi)
  ∧ sub_cubical_set{j:l}(Gamma, psi, phi; Gamma, (phi ∧ psi)))


Proof




Definitions occuring in Statement :  context-subset: Gamma, phi face-and: (a ∧ b) face-type: 𝔽 cubical-term: {X ⊢ _:A} sub_cubical_set: Y ⊆ X cubical_set: CubicalSet uall: [x:A]. B[x] and: P ∧ Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B subtype_rel: A ⊆B uimplies: supposing a all: x:A. B[x] context-subset: Gamma, phi iff: ⇐⇒ Q implies:  Q cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: so_apply: x[s] squash: T true: True guard: {T} rev_implies:  Q sub_cubical_set: Y ⊆ X
Lemmas referenced :  implies-sub_cubical_set context-subset_wf face-and_wf subset-cubical-term context-subset-is-subset face-type_wf I_cube_pair_redex_lemma face-and-eq-1 cubical-term-at_wf subtype_rel_self I_cube_wf lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf lattice-1_wf fset_wf nat_wf cube_set_restriction_pair_lemma squash_wf true_wf istype-universe face-term-at-restriction-eq-1 iff_weakening_equal cube-set-restriction_wf names-hom_wf cubical-term_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality independent_isectElimination instantiate because_Cache sqequalRule lambdaFormation_alt dependent_functionElimination Error :memTop,  lambdaEquality_alt setElimination rename productElimination independent_functionElimination dependent_set_memberEquality_alt equalityIstype inhabitedIsType equalityTransitivity equalitySymmetry setIsType universeIsType productEquality cumulativity isectEquality imageElimination universeEquality natural_numberEquality imageMemberEquality baseClosed independent_pairFormation independent_pairEquality axiomEquality isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi,psi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].
    (sub\_cubical\_set\{j:l\}(Gamma,  (phi  \mwedge{}  psi);  Gamma,  psi,  phi)
    \mwedge{}  sub\_cubical\_set\{j:l\}(Gamma,  psi,  phi;  Gamma,  (phi  \mwedge{}  psi)))



Date html generated: 2020_05_20-PM-02_55_59
Last ObjectModification: 2020_04_04-PM-05_10_22

Theory : cubical!type!theory


Home Index