Nuprl Lemma : context-map-subset
∀[G:j⊢]. ∀[phi:{G ⊢ _:𝔽}]. ∀[I:fset(ℕ)]. ∀[a:G, phi(I)].  (<a> = <a> ∈ formal-cube(I) j⟶ G, phi)
Proof
Definitions occuring in Statement : 
context-subset: Gamma, phi, 
face-type: 𝔽, 
cubical-term: {X ⊢ _:A}, 
context-map: <rho>, 
cube_set_map: A ⟶ B, 
formal-cube: formal-cube(I), 
I_cube: A(I), 
cubical_set: CubicalSet, 
fset: fset(T), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
context-subset: Gamma, phi, 
context-map: <rho>, 
all: ∀x:A. B[x], 
member: t ∈ T, 
functor-arrow: arrow(F), 
cube-set-restriction: f(s), 
csm-ap: (s)x, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a
Lemmas referenced : 
arrow_pair_lemma, 
csm-ap_wf, 
formal-cube_wf1, 
context-subset_wf, 
cubical_set_cumulativity-i-j, 
context-map_wf, 
I_cube_wf, 
csm-equal, 
fset_wf, 
nat_wf, 
cubical-term_wf, 
face-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
functionExtensionality, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
Error :memTop, 
hypothesis, 
instantiate, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
universeIsType
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[phi:\{G  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[a:G,  phi(I)].    (<a>  =  <a>)
Date html generated:
2020_05_20-PM-02_45_18
Last ObjectModification:
2020_04_05-PM-01_44_40
Theory : cubical!type!theory
Home
Index