Nuprl Lemma : context-subset-subtype-and2
∀[Gamma:j⊢]. ∀[phi1,phi2:{Gamma ⊢ _:𝔽}].  ({Gamma, phi2 ⊢ _} ⊆r {Gamma, (phi1 ∧ phi2) ⊢ _})
Proof
Definitions occuring in Statement : 
context-subset: Gamma, phi
, 
face-and: (a ∧ b)
, 
face-type: 𝔽
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
subset-cubical-type, 
context-subset_wf, 
face-and_wf, 
face-term-implies-subset, 
face-term-and-implies2, 
cubical-term_wf, 
face-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
instantiate, 
because_Cache, 
sqequalRule, 
axiomEquality, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
universeIsType
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi1,phi2:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].    (\{Gamma,  phi2  \mvdash{}  \_\}  \msubseteq{}r  \{Gamma,  (phi1  \mwedge{}  phi2)  \mvdash{}  \_\})
Date html generated:
2020_05_20-PM-02_52_45
Last ObjectModification:
2020_04_04-PM-05_07_15
Theory : cubical!type!theory
Home
Index