Nuprl Lemma : context-subset-term-1

[Gamma:j⊢]. ∀[T:{Gamma ⊢ _}].  ({Gamma ⊢ _:T} ⊆{Gamma, 1(𝔽) ⊢ _:T})


Proof




Definitions occuring in Statement :  context-subset: Gamma, phi face-1: 1(𝔽) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet subtype_rel: A ⊆B uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] subtype_rel: A ⊆B member: t ∈ T cubical-term: {X ⊢ _:A} context-subset: Gamma, phi all: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] bdd-distributive-lattice: BoundedDistributiveLattice prop: and: P ∧ Q uimplies: supposing a cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q cubical-term-at: u(a) face-1: 1(𝔽) lattice-1: 1 fset-singleton: {x} cons: [a b]
Lemmas referenced :  cubical-term_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j cubical-type_wf cubical_set_wf I_cube_pair_redex_lemma cube_set_restriction_pair_lemma subtype_rel_dep_function I_cube_wf cubical-type-at_wf equal_wf lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf cubical-term-at_wf face-type_wf face-1_wf subtype_rel_self lattice-1_wf istype-cubical-type-at fset_wf nat_wf squash_wf true_wf istype-universe cube-set-restriction_wf iff_weakening_equal names-hom_wf cubical-type-ap-morph_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaEquality_alt universeIsType cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality hypothesis sqequalRule setElimination rename dependent_functionElimination Error :memTop,  dependent_set_memberEquality_alt functionExtensionality cumulativity setEquality productEquality isectEquality because_Cache independent_isectElimination inhabitedIsType equalityTransitivity equalitySymmetry setIsType equalityIstype lambdaFormation_alt imageElimination universeEquality natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination functionIsType

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[T:\{Gamma  \mvdash{}  \_\}].    (\{Gamma  \mvdash{}  \_:T\}  \msubseteq{}r  \{Gamma,  1(\mBbbF{})  \mvdash{}  \_:T\})



Date html generated: 2020_05_20-PM-02_56_54
Last ObjectModification: 2020_04_04-PM-05_11_29

Theory : cubical!type!theory


Home Index