Nuprl Lemma : contractible-to-prop_wf
∀[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[cA:X +⊢ Compositon(A)]. ∀[c:{X ⊢ _:Contractible(A)}].
  (contractible-to-prop(X;A;cA;c) ∈ {X ⊢ _:isProp(A)})
Proof
Definitions occuring in Statement : 
contractible-to-prop: contractible-to-prop(X;A;cA;c), 
composition-structure: Gamma ⊢ Compositon(A), 
is-prop: isProp(A), 
contractible-type: Contractible(A), 
cubical-term: {X ⊢ _:A}, 
cubical-type: {X ⊢ _}, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
squash: ↓T, 
prop: ℙ, 
true: True, 
is-prop: isProp(A), 
contractible-to-prop: contractible-to-prop(X;A;cA;c), 
guard: {T}
Lemmas referenced : 
csm-ap-term_wf, 
cube-context-adjoin_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
csm-ap-type_wf, 
cc-fst_wf, 
contractible-type_wf, 
cubical-term_wf, 
squash_wf, 
true_wf, 
csm-contractible-type, 
contr-path_wf, 
contr-center_wf, 
composition-structure_wf, 
cubical-type_wf, 
cubical_set_wf, 
cubical-lambda_wf, 
cubical-pi_wf, 
path-type_wf, 
cc-snd_wf, 
comp-path_wf, 
csm-comp-structure_wf, 
rev-path_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality_alt, 
imageElimination, 
universeIsType, 
applyLambdaEquality, 
inhabitedIsType, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
hyp_replacement
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[cA:X  +\mvdash{}  Compositon(A)].  \mforall{}[c:\{X  \mvdash{}  \_:Contractible(A)\}].
    (contractible-to-prop(X;A;cA;c)  \mmember{}  \{X  \mvdash{}  \_:isProp(A)\})
Date html generated:
2020_05_20-PM-04_58_23
Last ObjectModification:
2020_04_13-PM-02_15_04
Theory : cubical!type!theory
Home
Index