Nuprl Lemma : rev-path_wf
∀[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[b,a:{X ⊢ _:A}]. ∀[pth:{X ⊢ _:(Path_A a b)}].  (rev-path(X;pth) ∈ {X ⊢ _:(Path_A b a)})
Proof
Definitions occuring in Statement : 
rev-path: rev-path(G;pth)
, 
path-type: (Path_A a b)
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
rev-path: rev-path(G;pth)
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
term-to-pathtype: <>a
, 
squash: ↓T
, 
true: True
, 
cc-snd: q
, 
interval-type: 𝕀
, 
cc-fst: p
, 
csm-ap-type: (AF)s
, 
constant-cubical-type: (X)
, 
prop: ℙ
, 
uimplies: b supposing a
, 
cubicalpath-app: pth @ r
, 
cubical-path-app: pth @ r
, 
cubical-app: app(w; u)
, 
csm-ap-term: (t)s
, 
term-to-path: <>(a)
, 
cubical-lambda: (λb)
, 
cc-adjoin-cube: (v;u)
, 
interval-rev: 1-(r)
, 
cubical-term-at: u(a)
, 
pi2: snd(t)
, 
cubical-term: {X ⊢ _:A}
, 
interval-0: 0(𝕀)
, 
interval-1: 1(𝕀)
, 
dM1: 1
, 
lattice-1: 1
, 
record-select: r.x
, 
dM: dM(I)
, 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq)
, 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
free-dist-lattice: free-dist-lattice(T; eq)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
btrue: tt
, 
fset-singleton: {x}
, 
cons: [a / b]
, 
dma-neg: ¬(x)
, 
dm-neg: ¬(x)
, 
lattice-extend: lattice-extend(L;eq;eqL;f;ac)
, 
lattice-fset-join: \/(s)
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
fset-image: f"(s)
, 
f-union: f-union(domeq;rngeq;s;x.g[x])
, 
list_accum: list_accum, 
dM0: 0
, 
lattice-0: 0
, 
empty-fset: {}
, 
nil: []
, 
it: ⋅
, 
opposite-lattice: opposite-lattice(L)
, 
DeMorgan-algebra: DeMorganAlgebra
Lemmas referenced : 
path-type-ext-eq, 
cubical-term_wf, 
path-type_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
cubical-type_wf, 
cubical_set_wf, 
cubicalpath-app_wf, 
interval-0_wf, 
interval-1_wf, 
path-type-subtype, 
term-to-pathtype_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
csm-ap-type_wf, 
cc-fst_wf, 
csm-ap-term_wf, 
pathtype_wf, 
csm-pathtype, 
interval-rev_wf, 
cc-snd_wf, 
cubical-path-app-1, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
I_cube_wf, 
fset_wf, 
nat_wf, 
cubical-term-equal, 
cc_fst_adjoin_cube_lemma, 
path-type-at, 
subtype_rel-equal, 
cubical-type-at_wf, 
cube-set-restriction_wf, 
nh-id_wf, 
cube-set-restriction-id, 
dma-neg_wf, 
dM_wf, 
dM0_wf, 
cubical-path-app-0, 
neg-dM1
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
sqequalRule, 
universeIsType, 
instantiate, 
inhabitedIsType, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
productIsType, 
equalityIstype, 
because_Cache, 
lambdaFormation_alt, 
dependent_functionElimination, 
independent_functionElimination, 
lambdaEquality_alt, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
hyp_replacement, 
universeEquality, 
functionExtensionality, 
independent_isectElimination, 
Error :memTop, 
setElimination, 
rename
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[b,a:\{X  \mvdash{}  \_:A\}].  \mforall{}[pth:\{X  \mvdash{}  \_:(Path\_A  a  b)\}].
    (rev-path(X;pth)  \mmember{}  \{X  \mvdash{}  \_:(Path\_A  b  a)\})
Date html generated:
2020_05_20-PM-03_22_24
Last ObjectModification:
2020_04_07-PM-03_32_58
Theory : cubical!type!theory
Home
Index