Nuprl Lemma : rev-path_wf

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[b,a:{X ⊢ _:A}]. ∀[pth:{X ⊢ _:(Path_A b)}].  (rev-path(X;pth) ∈ {X ⊢ _:(Path_A a)})


Proof




Definitions occuring in Statement :  rev-path: rev-path(G;pth) path-type: (Path_A b) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B rev-path: rev-path(G;pth) cand: c∧ B all: x:A. B[x] implies:  Q term-to-pathtype: <>a squash: T true: True cc-snd: q interval-type: 𝕀 cc-fst: p csm-ap-type: (AF)s constant-cubical-type: (X) prop: uimplies: supposing a cubicalpath-app: pth r cubical-path-app: pth r cubical-app: app(w; u) csm-ap-term: (t)s term-to-path: <>(a) cubical-lambda: b) cc-adjoin-cube: (v;u) interval-rev: 1-(r) cubical-term-at: u(a) pi2: snd(t) cubical-term: {X ⊢ _:A} interval-0: 0(𝕀) interval-1: 1(𝕀) dM1: 1 lattice-1: 1 record-select: r.x dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) btrue: tt fset-singleton: {x} cons: [a b] dma-neg: ¬(x) dm-neg: ¬(x) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum dM0: 0 lattice-0: 0 empty-fset: {} nil: [] it: opposite-lattice: opposite-lattice(L) DeMorgan-algebra: DeMorganAlgebra
Lemmas referenced :  path-type-ext-eq cubical-term_wf path-type_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j cubical-type_wf cubical_set_wf cubicalpath-app_wf interval-0_wf interval-1_wf path-type-subtype term-to-pathtype_wf cube-context-adjoin_wf interval-type_wf csm-ap-type_wf cc-fst_wf csm-ap-term_wf pathtype_wf csm-pathtype interval-rev_wf cc-snd_wf cubical-path-app-1 equal_wf squash_wf true_wf istype-universe I_cube_wf fset_wf nat_wf cubical-term-equal cc_fst_adjoin_cube_lemma path-type-at subtype_rel-equal cubical-type-at_wf cube-set-restriction_wf nh-id_wf cube-set-restriction-id dma-neg_wf dM_wf dM0_wf cubical-path-app-0 neg-dM1
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination equalityTransitivity equalitySymmetry applyEquality sqequalRule universeIsType instantiate inhabitedIsType dependent_set_memberEquality_alt independent_pairFormation productIsType equalityIstype because_Cache lambdaFormation_alt dependent_functionElimination independent_functionElimination lambdaEquality_alt imageElimination natural_numberEquality imageMemberEquality baseClosed hyp_replacement universeEquality functionExtensionality independent_isectElimination Error :memTop,  setElimination rename

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[b,a:\{X  \mvdash{}  \_:A\}].  \mforall{}[pth:\{X  \mvdash{}  \_:(Path\_A  a  b)\}].
    (rev-path(X;pth)  \mmember{}  \{X  \mvdash{}  \_:(Path\_A  b  a)\})



Date html generated: 2020_05_20-PM-03_22_24
Last ObjectModification: 2020_04_07-PM-03_32_58

Theory : cubical!type!theory


Home Index