Nuprl Lemma : csm-ap-term_wf1

[Delta,Gamma:j⊢]. ∀[A:{Gamma ⊢_}]. ∀[s:Delta j⟶ Gamma]. ∀[t:{Gamma ⊢ _:A}].  ((t)s ∈ {Delta ⊢ _:(A)s})


Proof




Definitions occuring in Statement :  csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-type: {X ⊢ _} cubical-term: {X ⊢ _:A} cubical-type-at: A(a) pi1: fst(t) all: x:A. B[x] csm-ap-term: (t)s csm-ap-type: (AF)s squash: T prop: subtype_rel: A ⊆B uimplies: supposing a true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  cubical_type_ap_morph_pair_lemma csm-ap_wf I_cube_wf fset_wf nat_wf equal_wf squash_wf true_wf istype-universe cube-set-restriction_wf subtype_rel-equal csm-ap-restriction subtype_rel_self iff_weakening_equal names-hom_wf cubical-term_wf cube_set_map_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut sqequalHypSubstitution setElimination thin rename productElimination dependent_set_memberEquality_alt sqequalRule introduction extract_by_obid dependent_functionElimination Error :memTop,  hypothesis lambdaEquality_alt applyEquality hypothesisEquality isectElimination universeIsType lambdaFormation_alt instantiate imageElimination equalityTransitivity equalitySymmetry universeEquality because_Cache independent_isectElimination natural_numberEquality imageMemberEquality baseClosed independent_functionElimination inhabitedIsType functionIsType equalityIstype

Latex:
\mforall{}[Delta,Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}j  \_\}].  \mforall{}[s:Delta  j{}\mrightarrow{}  Gamma].  \mforall{}[t:\{Gamma  \mvdash{}  \_:A\}].
    ((t)s  \mmember{}  \{Delta  \mvdash{}  \_:(A)s\})



Date html generated: 2020_05_20-PM-01_53_26
Last ObjectModification: 2020_04_03-PM-08_28_15

Theory : cubical!type!theory


Home Index