Nuprl Lemma : csm-ap-type-iota
∀[X:j⊢]. ∀[A:{X ⊢ _}].  ((A)iota = A ∈ {X ⊢ _})
Proof
Definitions occuring in Statement : 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
subset-iota: iota
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical-type: {X ⊢ _}
, 
subset-iota: iota
, 
csm-ap-type: (AF)s
, 
csm-ap: (s)x
, 
uimplies: b supposing a
Lemmas referenced : 
cubical-type-equal, 
I_cube_wf, 
fset_wf, 
nat_wf, 
names-hom_wf, 
cube-set-restriction_wf, 
eta_conv, 
cubical-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
equalitySymmetry, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
productElimination, 
sqequalRule, 
dependent_pairEquality_alt, 
lambdaEquality_alt, 
applyEquality, 
universeIsType, 
hypothesis, 
because_Cache, 
inhabitedIsType, 
functionIsType, 
independent_isectElimination, 
functionExtensionality_alt, 
instantiate, 
cumulativity, 
universeEquality, 
functionExtensionality
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].    ((A)iota  =  A)
Date html generated:
2020_05_20-PM-01_49_56
Last ObjectModification:
2020_04_03-PM-08_27_30
Theory : cubical!type!theory
Home
Index