Nuprl Lemma : csm-ap-type-iota

[X:j⊢]. ∀[A:{X ⊢ _}].  ((A)iota A ∈ {X ⊢ _})


Proof




Definitions occuring in Statement :  csm-ap-type: (AF)s cubical-type: {X ⊢ _} subset-iota: iota cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-type: {X ⊢ _} subset-iota: iota csm-ap-type: (AF)s csm-ap: (s)x uimplies: supposing a
Lemmas referenced :  cubical-type-equal I_cube_wf fset_wf nat_wf names-hom_wf cube-set-restriction_wf eta_conv cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt equalitySymmetry cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality setElimination rename productElimination sqequalRule dependent_pairEquality_alt lambdaEquality_alt applyEquality universeIsType hypothesis because_Cache inhabitedIsType functionIsType independent_isectElimination functionExtensionality_alt instantiate cumulativity universeEquality functionExtensionality

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].    ((A)iota  =  A)



Date html generated: 2020_05_20-PM-01_49_56
Last ObjectModification: 2020_04_03-PM-08_27_30

Theory : cubical!type!theory


Home Index