Nuprl Lemma : csm-case-type
∀[phi,A,B,s:Top].  (((if phi then A else B))s ~ (if (phi)s then (A)s else (B)s))
Proof
Definitions occuring in Statement : 
case-type: (if phi then A else B), 
csm-ap-term: (t)s, 
csm-ap-type: (AF)s, 
uall: ∀[x:A]. B[x], 
top: Top, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
case-type: (if phi then A else B), 
case-cube: case-cube(phi;A;B;I;rho), 
csm-ap-type: (AF)s, 
csm-ap-term: (t)s, 
cubical-term-at: u(a), 
csm-ap: (s)x, 
cubical-type-at: A(a), 
pi1: fst(t), 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]), 
so_apply: x[s1;s2;s3;s4], 
top: Top, 
uimplies: b supposing a, 
strict4: strict4(F), 
and: P ∧ Q, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
has-value: (a)↓, 
prop: ℙ, 
guard: {T}, 
or: P ∨ Q, 
squash: ↓T, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
cubical-type-ap-morph: (u a f), 
pi2: snd(t)
Lemmas referenced : 
top_wf, 
lifting-strict-spread, 
has-value_wf_base, 
base_wf, 
is-exception_wf, 
strict4-spread
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
hypothesis, 
sqequalAxiom, 
extract_by_obid, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
baseClosed, 
voidElimination, 
voidEquality, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
callbyvalueApply, 
baseApply, 
closedConclusion, 
applyExceptionCases, 
inrFormation, 
imageMemberEquality, 
imageElimination, 
exceptionSqequal, 
inlFormation
Latex:
\mforall{}[phi,A,B,s:Top].    (((if  phi  then  A  else  B))s  \msim{}  (if  (phi)s  then  (A)s  else  (B)s))
Date html generated:
2017_01_10-AM-08_51_28
Last ObjectModification:
2016_12_27-PM-01_48_21
Theory : cubical!type!theory
Home
Index