Nuprl Lemma : csm-subtype-cubical-subset
∀[Gamma:j⊢]. ∀[I:fset(ℕ)]. ∀[psi:𝔽(I)].  (formal-cube(I) j⟶ Gamma ⊆r I,psi j⟶ Gamma)
Proof
Definitions occuring in Statement : 
cubical-subset: I,psi, 
face-presheaf: 𝔽, 
cube_set_map: A ⟶ B, 
formal-cube: formal-cube(I), 
I_cube: A(I), 
cubical_set: CubicalSet, 
fset: fset(T), 
nat: ℕ, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
member: t ∈ T, 
cube_set_map: A ⟶ B, 
psc_map: A ⟶ B, 
nat-trans: nat-trans(C;D;F;G), 
formal-cube: formal-cube(I), 
type-cat: TypeCat, 
cube-cat: CubeCat, 
all: ∀x:A. B[x], 
cubical-subset: I,psi, 
rep-sub-sheaf: rep-sub-sheaf(C;X;P), 
compose: f o g, 
functor-arrow: arrow(F), 
functor-ob: ob(F), 
op-cat: op-cat(C), 
cat-arrow: cat-arrow(C), 
cat-ob: cat-ob(C), 
spreadn: spread4, 
pi1: fst(t), 
pi2: snd(t), 
I_cube: A(I), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
face-presheaf: 𝔽, 
lattice-point: Point(l), 
record-select: r.x, 
face_lattice: face_lattice(I), 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
bdd-distributive-lattice: BoundedDistributiveLattice, 
prop: ℙ, 
and: P ∧ Q, 
uimplies: b supposing a, 
istype: istype(T), 
cubical_set: CubicalSet, 
ps_context: __⊢, 
cat-functor: Functor(C1;C2)
Lemmas referenced : 
cat_arrow_triple_lemma, 
ob_pair_lemma, 
cat_comp_tuple_lemma, 
arrow_pair_lemma, 
subtype_rel_dep_function, 
names-hom_wf, 
I_cube_wf, 
name-morph-satisfies_wf, 
subtype_rel_self, 
lattice-point_wf, 
face_lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
fset_wf, 
nat_wf, 
cat-ob_wf, 
op-cat_wf, 
cube-cat_wf, 
cat-arrow_wf, 
type-cat_wf, 
functor-ob_wf, 
cubical-subset_wf, 
cat-comp_wf, 
small-category-cumulativity-2, 
cat-functor_wf, 
functor-arrow_wf, 
cube_set_map_wf, 
formal-cube_wf1, 
face-presheaf_wf2, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
cut, 
dependent_set_memberEquality_alt, 
sqequalRule, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
Error :memTop, 
hypothesis, 
functionExtensionality, 
applyEquality, 
hypothesisEquality, 
instantiate, 
isectElimination, 
cumulativity, 
universeIsType, 
setEquality, 
productEquality, 
isectEquality, 
because_Cache, 
independent_isectElimination, 
setIsType, 
lambdaFormation_alt, 
functionIsType, 
equalityIstype, 
applyLambdaEquality
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[psi:\mBbbF{}(I)].    (formal-cube(I)  j{}\mrightarrow{}  Gamma  \msubseteq{}r  I,psi  j{}\mrightarrow{}  Gamma)
Date html generated:
2020_05_20-PM-04_20_08
Last ObjectModification:
2020_04_21-AM-00_50_09
Theory : cubical!type!theory
Home
Index