Nuprl Lemma : csm-transprt-const

[G:j⊢]. ∀[A:{G ⊢ _}]. ∀[cA:G +⊢ Compositon(A)]. ∀[a:{G ⊢ _:A}]. ∀[H:j⊢]. ∀[s:H j⟶ G].
  ((transprt-const(G;cA;a))s transprt-const(H;(cA)s;(a)s) ∈ {H ⊢ _:(A)s})


Proof




Definitions occuring in Statement :  transprt-const: transprt-const(G;cA;a) csm-comp-structure: (cA)tau composition-structure: Gamma ⊢ Compositon(A) csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B cubical-type: {X ⊢ _} csm-id: 1(X) csm-ap-type: (AF)s cc-fst: p interval-0: 0(𝕀) csm-id-adjoin: [u] csm-ap: (s)x csm-adjoin: (s;u) pi1: fst(t) interval-1: 1(𝕀) uimplies: supposing a transprt-const: transprt-const(G;cA;a) csm-comp-structure: (cA)tau interval-type: 𝕀 csm-comp: F csm+: tau+ compose: g cc-snd: q constant-cubical-type: (X) squash: T all: x:A. B[x] true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  csm-transprt cubical_set_cumulativity-i-j csm-ap-type_wf cube-context-adjoin_wf interval-type_wf cc-fst_wf_interval csm-comp-structure_wf subset-cubical-term2 sub_cubical_set_self csm-id_wf csm-ap-id-type cube_set_map_cumulativity-i-j cube_set_map_wf istype-cubical-term composition-structure_wf cubical-type_wf cubical_set_wf transprt_wf equal_wf cubical-term_wf csm_id_adjoin_fst_type_lemma cubical-term-eqcd iff_weakening_equal csm-ap-term_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality hypothesis sqequalRule because_Cache setElimination rename productElimination independent_isectElimination equalitySymmetry universeIsType isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType equalityTransitivity lambdaEquality_alt imageElimination closedConclusion universeEquality dependent_functionElimination Error :memTop,  cumulativity natural_numberEquality imageMemberEquality baseClosed independent_functionElimination hyp_replacement

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A:\{G  \mvdash{}  \_\}].  \mforall{}[cA:G  +\mvdash{}  Compositon(A)].  \mforall{}[a:\{G  \mvdash{}  \_:A\}].  \mforall{}[H:j\mvdash{}].  \mforall{}[s:H  j{}\mrightarrow{}  G].
    ((transprt-const(G;cA;a))s  =  transprt-const(H;(cA)s;(a)s))



Date html generated: 2020_05_20-PM-04_39_18
Last ObjectModification: 2020_04_19-PM-02_08_39

Theory : cubical!type!theory


Home Index