Nuprl Lemma : csm-transprt-const
∀[G:j⊢]. ∀[A:{G ⊢ _}]. ∀[cA:G +⊢ Compositon(A)]. ∀[a:{G ⊢ _:A}]. ∀[H:j⊢]. ∀[s:H j⟶ G].
  ((transprt-const(G;cA;a))s = transprt-const(H;(cA)s;(a)s) ∈ {H ⊢ _:(A)s})
Proof
Definitions occuring in Statement : 
transprt-const: transprt-const(G;cA;a)
, 
csm-comp-structure: (cA)tau
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
cubical-type: {X ⊢ _}
, 
csm-id: 1(X)
, 
csm-ap-type: (AF)s
, 
cc-fst: p
, 
interval-0: 0(𝕀)
, 
csm-id-adjoin: [u]
, 
csm-ap: (s)x
, 
csm-adjoin: (s;u)
, 
pi1: fst(t)
, 
interval-1: 1(𝕀)
, 
uimplies: b supposing a
, 
transprt-const: transprt-const(G;cA;a)
, 
csm-comp-structure: (cA)tau
, 
interval-type: 𝕀
, 
csm-comp: G o F
, 
csm+: tau+
, 
compose: f o g
, 
cc-snd: q
, 
constant-cubical-type: (X)
, 
squash: ↓T
, 
all: ∀x:A. B[x]
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
csm-transprt, 
cubical_set_cumulativity-i-j, 
csm-ap-type_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
cc-fst_wf_interval, 
csm-comp-structure_wf, 
subset-cubical-term2, 
sub_cubical_set_self, 
csm-id_wf, 
csm-ap-id-type, 
cube_set_map_cumulativity-i-j, 
cube_set_map_wf, 
istype-cubical-term, 
composition-structure_wf, 
cubical-type_wf, 
cubical_set_wf, 
transprt_wf, 
equal_wf, 
cubical-term_wf, 
csm_id_adjoin_fst_type_lemma, 
cubical-term-eqcd, 
iff_weakening_equal, 
csm-ap-term_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
because_Cache, 
setElimination, 
rename, 
productElimination, 
independent_isectElimination, 
equalitySymmetry, 
universeIsType, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
equalityTransitivity, 
lambdaEquality_alt, 
imageElimination, 
closedConclusion, 
universeEquality, 
dependent_functionElimination, 
Error :memTop, 
cumulativity, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
hyp_replacement
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A:\{G  \mvdash{}  \_\}].  \mforall{}[cA:G  +\mvdash{}  Compositon(A)].  \mforall{}[a:\{G  \mvdash{}  \_:A\}].  \mforall{}[H:j\mvdash{}].  \mforall{}[s:H  j{}\mrightarrow{}  G].
    ((transprt-const(G;cA;a))s  =  transprt-const(H;(cA)s;(a)s))
Date html generated:
2020_05_20-PM-04_39_18
Last ObjectModification:
2020_04_19-PM-02_08_39
Theory : cubical!type!theory
Home
Index