Nuprl Lemma : csm-transprt

[Gamma:j⊢]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:Gamma.𝕀 ⊢ Compositon(A)]. ∀[a:{Gamma ⊢ _:(A)[0(𝕀)]}]. ∀[H:j⊢]. ∀[s:H j⟶ Gamma].
  ((transprt(Gamma;cA;a))s transprt(H;(cA)s+;(a)s) ∈ {H ⊢ _:((A)[1(𝕀)])s})


Proof




Definitions occuring in Statement :  transprt: transprt(G;cA;a0) csm-comp-structure: (cA)tau composition-structure: Gamma ⊢ Compositon(A) interval-1: 1(𝕀) interval-0: 0(𝕀) interval-type: 𝕀 csm+: tau+ csm-id-adjoin: [u] cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T transprt: transprt(G;cA;a0) constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} subtype_rel: A ⊆B uimplies: supposing a csm+: tau+ csm-comp: F cubical-type: {X ⊢ _} interval-1: 1(𝕀) csm-id-adjoin: [u] csm-ap-type: (AF)s interval-type: 𝕀 csm-ap: (s)x csm-id: 1(X) csm-adjoin: (s;u) cc-snd: q cc-fst: p constant-cubical-type: (X) pi2: snd(t) compose: g pi1: fst(t)
Lemmas referenced :  csm-comp_term face-0_wf empty-context-subset-lemma4 interval-type_wf empty-context-subset-lemma3 subset-cubical-term context-subset_wf context-subset-is-subset csm-ap-type_wf cube-context-adjoin_wf csm-id-adjoin_wf-interval-0 cube_set_map_wf istype-cubical-term cubical_set_cumulativity-i-j cubical-type-cumulativity2 composition-structure_wf cubical-type_wf cubical_set_wf subset-cubical-term2 sub_cubical_set_self csm+_wf_interval csm-id-adjoin_wf-interval-1 csm-face-0 csm-discrete-cubical-term
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis Error :memTop,  equalityTransitivity equalitySymmetry dependent_set_memberEquality_alt equalityIstype inhabitedIsType applyEquality because_Cache independent_isectElimination instantiate sqequalRule universeIsType isect_memberEquality_alt axiomEquality isectIsTypeImplies lambdaEquality_alt setElimination rename productElimination

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cA:Gamma.\mBbbI{}  \mvdash{}  Compositon(A)].  \mforall{}[a:\{Gamma  \mvdash{}  \_:(A)[0(\mBbbI{})]\}].  \mforall{}[H:j\mvdash{}].
\mforall{}[s:H  j{}\mrightarrow{}  Gamma].
    ((transprt(Gamma;cA;a))s  =  transprt(H;(cA)s+;(a)s))



Date html generated: 2020_05_20-PM-04_38_30
Last ObjectModification: 2020_04_15-PM-02_43_03

Theory : cubical!type!theory


Home Index