Nuprl Lemma : ctt-op_wf
CttOp ∈ 𝕌'
Proof
Definitions occuring in Statement : 
ctt-op: CttOp
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
ctt-op: CttOp
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
Lemmas referenced : 
l_member_wf, 
cons_wf, 
nil_wf, 
istype-atom, 
eq_atom_wf, 
ctt-tokens_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
productEquality, 
setEquality, 
closedConclusion, 
atomEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
tokenEquality, 
hypothesis, 
applyEquality, 
lambdaEquality_alt, 
cumulativity, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation_alt, 
setElimination, 
rename, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
dependent_pairFormation_alt, 
equalityIstype, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
independent_functionElimination, 
voidElimination, 
universeEquality
Latex:
CttOp  \mmember{}  \mBbbU{}'
Date html generated:
2020_05_20-PM-08_16_45
Last ObjectModification:
2020_02_10-PM-01_04_34
Theory : cubical!type!theory
Home
Index