Nuprl Lemma : ctt-op_wf

CttOp ∈ 𝕌'


Proof




Definitions occuring in Statement :  ctt-op: CttOp member: t ∈ T universe: Type
Definitions unfolded in proof :  ctt-op: CttOp member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B prop: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False
Lemmas referenced :  l_member_wf cons_wf nil_wf istype-atom eq_atom_wf ctt-tokens_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_atom
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep productEquality setEquality closedConclusion atomEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality because_Cache tokenEquality hypothesis applyEquality lambdaEquality_alt cumulativity inhabitedIsType equalityTransitivity equalitySymmetry lambdaFormation_alt setElimination rename unionElimination equalityElimination productElimination independent_isectElimination dependent_pairFormation_alt equalityIstype promote_hyp dependent_functionElimination instantiate independent_functionElimination voidElimination universeEquality

Latex:
CttOp  \mmember{}  \mBbbU{}'



Date html generated: 2020_05_20-PM-08_16_45
Last ObjectModification: 2020_02_10-PM-01_04_34

Theory : cubical!type!theory


Home Index