Nuprl Lemma : ctt-opr-is_wf
∀[f:CttOp]. ∀[s:Atom].  (ctt-opr-is(f;s) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
ctt-opr-is: ctt-opr-is(f;s), 
ctt-op: CttOp, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
atom: Atom
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
ctt-opr-is: ctt-opr-is(f;s), 
ctt-op: CttOp, 
all: ∀x:A. B[x], 
or: P ∨ Q, 
uimplies: b supposing a, 
sq_type: SQType(T), 
implies: P ⇒ Q, 
guard: {T}, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
prop: ℙ, 
bfalse: ff, 
exists: ∃x:A. B[x], 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
band: p ∧b q
Lemmas referenced : 
eq_atom_wf, 
bool_cases, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
band_wf, 
btrue_wf, 
assert_of_eq_atom, 
l_member_wf, 
ctt-tokens_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
bfalse_wf, 
istype-atom, 
ctt-op_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
extract_by_obid, 
isectElimination, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
closedConclusion, 
tokenEquality, 
dependent_functionElimination, 
unionElimination, 
instantiate, 
cumulativity, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
applyEquality, 
because_Cache, 
inhabitedIsType, 
lambdaFormation_alt, 
equalityElimination, 
lambdaEquality_alt, 
setIsType, 
universeIsType, 
atomEquality, 
dependent_pairFormation_alt, 
equalityIstype, 
promote_hyp, 
voidElimination, 
axiomEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies
Latex:
\mforall{}[f:CttOp].  \mforall{}[s:Atom].    (ctt-opr-is(f;s)  \mmember{}  \mBbbB{})
Date html generated:
2020_05_20-PM-08_21_10
Last ObjectModification:
2020_02_15-AM-10_59_40
Theory : cubical!type!theory
Home
Index