Nuprl Lemma : ctt-term-type-is-implies
∀[X:⊢''']. ∀[t:cttTerm(X)]. ∀[T:{X ⊢''' _}].  term(t) ∈ {X ⊢ _:T} supposing type(t)=T
Proof
Definitions occuring in Statement : 
ctt-term-term: term(t)
, 
ctt-term-type-is: type(t)=T
, 
ctt-term-meaning: cttTerm(X)
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
ctt-term-type-is: type(t)=T
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
cubical-term-eqcd, 
ctt-term-term_wf, 
subtype_rel_wf, 
squash_wf, 
true_wf, 
istype-universe, 
iff_weakening_equal, 
subtype_rel_self, 
ctt-term-type-is_wf, 
cubical-type_wf, 
ctt-term-meaning_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
sqequalHypSubstitution, 
cut, 
hypothesis, 
thin, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType, 
lambdaFormation_alt, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
sqequalRule, 
productIsType, 
equalityIstype, 
hypothesisEquality, 
applyLambdaEquality, 
setElimination, 
rename, 
productElimination, 
instantiate, 
introduction, 
extract_by_obid, 
isectElimination, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
applyEquality, 
lambdaEquality_alt, 
imageElimination, 
universeIsType, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[X:\mvdash{}'''].  \mforall{}[t:cttTerm(X)].  \mforall{}[T:\{X  \mvdash{}'''  \_\}].    term(t)  \mmember{}  \{X  \mvdash{}  \_:T\}  supposing  type(t)=T
Date html generated:
2020_05_20-PM-07_53_06
Last ObjectModification:
2020_05_05-PM-02_10_25
Theory : cubical!type!theory
Home
Index