Nuprl Lemma : ctt-term-type-is-implies

[X:⊢''']. ∀[t:cttTerm(X)]. ∀[T:{X ⊢''' _}].  term(t) ∈ {X ⊢ _:T} supposing type(t)=T


Proof




Definitions occuring in Statement :  ctt-term-term: term(t) ctt-term-type-is: type(t)=T ctt-term-meaning: cttTerm(X) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a ctt-term-type-is: type(t)=T member: t ∈ T all: x:A. B[x] implies:  Q and: P ∧ Q subtype_rel: A ⊆B squash: T prop: true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  cubical-term-eqcd ctt-term-term_wf subtype_rel_wf squash_wf true_wf istype-universe iff_weakening_equal subtype_rel_self ctt-term-type-is_wf cubical-type_wf ctt-term-meaning_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt sqequalHypSubstitution cut hypothesis thin equalityTransitivity equalitySymmetry inhabitedIsType lambdaFormation_alt dependent_set_memberEquality_alt independent_pairFormation sqequalRule productIsType equalityIstype hypothesisEquality applyLambdaEquality setElimination rename productElimination instantiate introduction extract_by_obid isectElimination independent_isectElimination dependent_functionElimination independent_functionElimination applyEquality lambdaEquality_alt imageElimination universeIsType universeEquality natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}[X:\mvdash{}'''].  \mforall{}[t:cttTerm(X)].  \mforall{}[T:\{X  \mvdash{}'''  \_\}].    term(t)  \mmember{}  \{X  \mvdash{}  \_:T\}  supposing  type(t)=T



Date html generated: 2020_05_20-PM-07_53_06
Last ObjectModification: 2020_05_05-PM-02_10_25

Theory : cubical!type!theory


Home Index