Nuprl Lemma : cubical-refl-p-p
∀[X:j⊢]. ∀[A,B:{X ⊢ _}]. ∀[a:{X ⊢ _:A}]. ∀[C:{X.B ⊢ _}].
  (refl(((a)p)p) = ((refl(a))p)p ∈ {X.B.C ⊢ _:(((Path_A a a))p)p})
Proof
Definitions occuring in Statement : 
cubical-refl: refl(a)
, 
path-type: (Path_A a b)
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
squash: ↓T
, 
guard: {T}
, 
uimplies: b supposing a
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
cubical-refl-p, 
cube-context-adjoin_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
csm-ap-type_wf, 
cc-fst_wf, 
csm-ap-term_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
subset-cubical-term2, 
sub_cubical_set_self, 
path-type_wf, 
cubical-type_wf, 
path-type-p, 
subtype_rel_self, 
iff_weakening_equal, 
cubical-term_wf, 
cubical_set_wf, 
cube_set_map_wf, 
csm-cubical-refl
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
equalityTransitivity, 
equalitySymmetry, 
hyp_replacement, 
lambdaEquality_alt, 
imageElimination, 
universeIsType, 
universeEquality, 
independent_isectElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination, 
inhabitedIsType, 
applyLambdaEquality
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A,B:\{X  \mvdash{}  \_\}].  \mforall{}[a:\{X  \mvdash{}  \_:A\}].  \mforall{}[C:\{X.B  \mvdash{}  \_\}].    (refl(((a)p)p)  =  ((refl(a))p)p)
Date html generated:
2020_05_20-PM-03_21_47
Last ObjectModification:
2020_04_07-PM-03_21_31
Theory : cubical!type!theory
Home
Index