Nuprl Lemma : cubical-refl-p-p

[X:j⊢]. ∀[A,B:{X ⊢ _}]. ∀[a:{X ⊢ _:A}]. ∀[C:{X.B ⊢ _}].
  (refl(((a)p)p) ((refl(a))p)p ∈ {X.B.C ⊢ _:(((Path_A a))p)p})


Proof




Definitions occuring in Statement :  cubical-refl: refl(a) path-type: (Path_A b) cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B prop: squash: T guard: {T} uimplies: supposing a true: True iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  cubical-refl-p cube-context-adjoin_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j csm-ap-type_wf cc-fst_wf csm-ap-term_wf equal_wf squash_wf true_wf istype-universe subset-cubical-term2 sub_cubical_set_self path-type_wf cubical-type_wf path-type-p subtype_rel_self iff_weakening_equal cubical-term_wf cubical_set_wf cube_set_map_wf csm-cubical-refl
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality because_Cache hypothesis sqequalRule equalityTransitivity equalitySymmetry hyp_replacement lambdaEquality_alt imageElimination universeIsType universeEquality independent_isectElimination natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination inhabitedIsType applyLambdaEquality

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A,B:\{X  \mvdash{}  \_\}].  \mforall{}[a:\{X  \mvdash{}  \_:A\}].  \mforall{}[C:\{X.B  \mvdash{}  \_\}].    (refl(((a)p)p)  =  ((refl(a))p)p)



Date html generated: 2020_05_20-PM-03_21_47
Last ObjectModification: 2020_04_07-PM-03_21_31

Theory : cubical!type!theory


Home Index