Nuprl Lemma : cubical-term-at-comp-constant-type

[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[I:fset(ℕ)]. ∀[rho:Gamma(I)]. ∀[J:fset(ℕ)]. ∀[f:{f:J ⟶ I| 
                                                                                     phi(f(rho))
                                                                                     1
                                                                                     ∈ Point(face_lattice(J))} ].
[K:fset(ℕ)]. ∀[g:K ⟶ J].
  (phi(g(f(rho))) phi(f ⋅ g(rho)) ∈ Point(face_lattice(K)))


Proof




Definitions occuring in Statement :  face-type: 𝔽 cubical-term-at: u(a) cubical-term: {X ⊢ _:A} face_lattice: face_lattice(I) cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet nh-comp: g ⋅ f names-hom: I ⟶ J fset: fset(T) nat: uall: [x:A]. B[x] set: {x:A| B[x]}  equal: t ∈ T lattice-1: 1 lattice-point: Point(l)
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) true: True squash: T guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q compose: g
Lemmas referenced :  names-hom_wf lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf cubical-term-at_wf face-type_wf cube-set-restriction_wf subtype_rel_self lattice-1_wf I_cube_wf fset_wf nat_wf cubical-term_wf cubical_set_wf fl-morph_wf nh-comp_wf squash_wf true_wf istype-universe face-type-ap-morph cubical-term-at-morph fl-morph-comp iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis because_Cache setIsType equalityIstype applyEquality sqequalRule instantiate lambdaEquality_alt productEquality cumulativity isectEquality independent_isectElimination setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry Error :memTop,  natural_numberEquality imageElimination universeEquality imageMemberEquality baseClosed productElimination independent_functionElimination

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[rho:Gamma(I)].  \mforall{}[J:fset(\mBbbN{})].
\mforall{}[f:\{f:J  {}\mrightarrow{}  I|  phi(f(rho))  =  1\}  ].  \mforall{}[K:fset(\mBbbN{})].  \mforall{}[g:K  {}\mrightarrow{}  J].
    (phi(g(f(rho)))  =  phi(f  \mcdot{}  g(rho)))



Date html generated: 2020_05_20-PM-02_53_20
Last ObjectModification: 2020_04_04-PM-05_07_47

Theory : cubical!type!theory


Home Index