Nuprl Lemma : cubical-term-at-comp-constant-type
∀[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[I:fset(ℕ)]. ∀[rho:Gamma(I)]. ∀[J:fset(ℕ)]. ∀[f:{f:J ⟶ I| 
                                                                                     phi(f(rho))
                                                                                     = 1
                                                                                     ∈ Point(face_lattice(J))} ].
∀[K:fset(ℕ)]. ∀[g:K ⟶ J].
  (phi(g(f(rho))) = phi(f ⋅ g(rho)) ∈ Point(face_lattice(K)))
Proof
Definitions occuring in Statement : 
face-type: 𝔽, 
cubical-term-at: u(a), 
cubical-term: {X ⊢ _:A}, 
face_lattice: face_lattice(I), 
cube-set-restriction: f(s), 
I_cube: A(I), 
cubical_set: CubicalSet, 
nh-comp: g ⋅ f, 
names-hom: I ⟶ J, 
fset: fset(T), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
set: {x:A| B[x]} , 
equal: s = t ∈ T, 
lattice-1: 1, 
lattice-point: Point(l)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
bdd-distributive-lattice: BoundedDistributiveLattice, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
and: P ∧ Q, 
so_apply: x[s], 
uimplies: b supposing a, 
cubical-type-at: A(a), 
pi1: fst(t), 
face-type: 𝔽, 
constant-cubical-type: (X), 
I_cube: A(I), 
functor-ob: ob(F), 
face-presheaf: 𝔽, 
lattice-point: Point(l), 
record-select: r.x, 
face_lattice: face_lattice(I), 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
bounded-lattice-hom: Hom(l1;l2), 
lattice-hom: Hom(l1;l2), 
true: True, 
squash: ↓T, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
compose: f o g
Lemmas referenced : 
names-hom_wf, 
lattice-point_wf, 
face_lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
cubical-term-at_wf, 
face-type_wf, 
cube-set-restriction_wf, 
subtype_rel_self, 
lattice-1_wf, 
I_cube_wf, 
fset_wf, 
nat_wf, 
cubical-term_wf, 
cubical_set_wf, 
fl-morph_wf, 
nh-comp_wf, 
squash_wf, 
true_wf, 
istype-universe, 
face-type-ap-morph, 
cubical-term-at-morph, 
fl-morph-comp, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
setIsType, 
equalityIstype, 
applyEquality, 
sqequalRule, 
instantiate, 
lambdaEquality_alt, 
productEquality, 
cumulativity, 
isectEquality, 
independent_isectElimination, 
setElimination, 
rename, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
Error :memTop, 
natural_numberEquality, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[rho:Gamma(I)].  \mforall{}[J:fset(\mBbbN{})].
\mforall{}[f:\{f:J  {}\mrightarrow{}  I|  phi(f(rho))  =  1\}  ].  \mforall{}[K:fset(\mBbbN{})].  \mforall{}[g:K  {}\mrightarrow{}  J].
    (phi(g(f(rho)))  =  phi(f  \mcdot{}  g(rho)))
Date html generated:
2020_05_20-PM-02_53_20
Last ObjectModification:
2020_04_04-PM-05_07_47
Theory : cubical!type!theory
Home
Index