Nuprl Lemma : cubical-term-at-comp-is-1

[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[I:fset(ℕ)]. ∀[rho:Gamma(I)]. ∀[J:fset(ℕ)]. ∀[f:J ⟶ I]. ∀[K:fset(ℕ)]. ∀[g:K ⟶ J].
  ((phi(f(rho)) 1 ∈ Point(face_lattice(J)))  (phi(f ⋅ g(rho)) 1 ∈ Point(face_lattice(K))))


Proof




Definitions occuring in Statement :  face-type: 𝔽 cubical-term-at: u(a) cubical-term: {X ⊢ _:A} face_lattice: face_lattice(I) cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet nh-comp: g ⋅ f names-hom: I ⟶ J fset: fset(T) nat: uall: [x:A]. B[x] implies:  Q equal: t ∈ T lattice-1: 1 lattice-point: Point(l)
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q member: t ∈ T squash: T prop: subtype_rel: A ⊆B cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] so_apply: x[s] compose: g bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2)
Lemmas referenced :  equal_wf squash_wf true_wf istype-universe cubical-term-at-morph face-type_wf subtype_rel_self iff_weakening_equal lattice-point_wf face_lattice_wf nh-comp_wf lattice-1_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf cubical-term-at_wf cube-set-restriction_wf names-hom_wf I_cube_wf fset_wf nat_wf cubical-term_wf cubical_set_wf face-type-ap-morph fl-morph-comp fl-morph_wf fl-morph-1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt cut applyEquality thin lambdaEquality_alt sqequalHypSubstitution imageElimination introduction extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeIsType instantiate universeEquality because_Cache sqequalRule natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination equalityIstype productEquality cumulativity isectEquality setElimination rename inhabitedIsType Error :memTop

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[rho:Gamma(I)].  \mforall{}[J:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].
\mforall{}[K:fset(\mBbbN{})].  \mforall{}[g:K  {}\mrightarrow{}  J].
    ((phi(f(rho))  =  1)  {}\mRightarrow{}  (phi(f  \mcdot{}  g(rho))  =  1))



Date html generated: 2020_05_20-PM-02_53_32
Last ObjectModification: 2020_04_04-PM-05_07_57

Theory : cubical!type!theory


Home Index