Nuprl Lemma : dM-0-not-1
∀[I:fset(ℕ)]. (¬(0 = 1 ∈ Point(dM(I))))
Proof
Definitions occuring in Statement : 
dM1: 1, 
dM0: 0, 
dM: dM(I), 
lattice-point: Point(l), 
fset: fset(T), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
dM1: 1, 
dM0: 0, 
dM: dM(I), 
prop: ℙ, 
subtype_rel: A ⊆r B, 
DeMorgan-algebra: DeMorganAlgebra, 
so_lambda: λ2x.t[x], 
and: P ∧ Q, 
guard: {T}, 
uimplies: b supposing a, 
so_apply: x[s], 
top: Top, 
lattice-0: 0, 
record-select: r.x, 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq), 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq), 
free-dist-lattice: free-dist-lattice(T; eq), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
btrue: tt, 
empty-fset: {}, 
nil: [], 
it: ⋅, 
lattice-1: 1, 
fset-singleton: {x}, 
cons: [a / b], 
all: ∀x:A. B[x]
Lemmas referenced : 
equal_wf, 
lattice-point_wf, 
dM_wf, 
subtype_rel_set, 
DeMorgan-algebra-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
bounded-lattice-structure_wf, 
bounded-lattice-axioms_wf, 
uall_wf, 
lattice-meet_wf, 
lattice-join_wf, 
DeMorgan-algebra-axioms_wf, 
dM0_wf, 
dM1_wf, 
fset_wf, 
nat_wf, 
free-dma-point, 
free-dml-0-not-1, 
names_wf, 
names-deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
hypothesis, 
sqequalHypSubstitution, 
independent_functionElimination, 
voidElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
instantiate, 
lambdaEquality, 
productEquality, 
independent_isectElimination, 
cumulativity, 
universeEquality, 
because_Cache, 
dependent_functionElimination, 
isect_memberEquality, 
voidEquality
Latex:
\mforall{}[I:fset(\mBbbN{})].  (\mneg{}(0  =  1))
Date html generated:
2017_10_05-AM-00_59_21
Last ObjectModification:
2017_07_28-AM-09_25_18
Theory : cubical!type!theory
Home
Index