Nuprl Lemma : dM-dM-homs-equal

[I,J:fset(ℕ)]. ∀[h1,h2:dma-hom(dM(I);dM(J))].
  h1 h2 ∈ (Point(dM(I)) ⟶ Point(dM(J))) supposing ∀i:names(I). ((h1 <i>(h2 <i>) ∈ Point(dM(J)))


Proof




Definitions occuring in Statement :  dM_inc: <x> dM: dM(I) names: names(I) dma-hom: dma-hom(dma1;dma2) lattice-point: Point(l) fset: fset(T) nat: uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] apply: a function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B guard: {T} all: x:A. B[x] dma-hom: dma-hom(dma1;dma2) and: P ∧ Q cand: c∧ B squash: T prop: bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) true: True iff: ⇐⇒ Q rev_implies:  Q implies:  Q so_lambda: λ2x.t[x] DeMorgan-algebra: DeMorganAlgebra so_apply: x[s]
Lemmas referenced :  dM-homs-equal dM_wf bdd-distributive-lattice-subtype-bdd-lattice DeMorgan-algebra-subtype subtype_rel_transitivity DeMorgan-algebra_wf bdd-distributive-lattice_wf bdd-lattice_wf dM-deq_wf equal_wf squash_wf true_wf lattice-point_wf dM_inc_wf iff_weakening_equal names_wf all_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf dma-hom_wf fset_wf nat_wf dM_opp_wf dma-neg-dM_inc dma-neg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality instantiate independent_isectElimination sqequalRule dependent_functionElimination setElimination rename lambdaFormation lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality because_Cache natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination independent_pairFormation productEquality cumulativity isect_memberEquality axiomEquality hyp_replacement

Latex:
\mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[h1,h2:dma-hom(dM(I);dM(J))].    h1  =  h2  supposing  \mforall{}i:names(I).  ((h1  <i>)  =  (h2  <i>))



Date html generated: 2017_10_05-AM-01_00_26
Last ObjectModification: 2017_07_28-AM-09_25_46

Theory : cubical!type!theory


Home Index