Nuprl Lemma : dM-join-inc-opp
∀[i:ℕ]. (<i> ∨ <1-i> ~ {{inr i },{inl i}})
Proof
Definitions occuring in Statement : 
dM_opp: <1-x>, 
dM_inc: <x>, 
dM: dM(I), 
lattice-join: a ∨ b, 
fset-pair: {a,b}, 
fset-singleton: {x}, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
inr: inr x , 
inl: inl x, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
lattice-join: a ∨ b, 
record-select: r.x, 
dM: dM(I), 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq), 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq), 
free-dist-lattice: free-dist-lattice(T; eq), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
btrue: tt, 
fset-ac-lub: fset-ac-lub(eq;ac1;ac2), 
fset-minimals: fset-minimals(x,y.less[x; y]; s), 
fset-filter: {x ∈ s | P[x]}, 
filter: filter(P;l), 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
fset-union: x ⋃ y, 
l-union: as ⋃ bs, 
dM_opp: <1-x>, 
dmopp: <1-i>, 
free-dl-inc: free-dl-inc(x), 
fset-singleton: {x}, 
cons: [a / b], 
insert: insert(a;L), 
eval_list: eval_list(t), 
nil: [], 
it: ⋅, 
dM_inc: <x>, 
dminc: <i>, 
deq-member: x ∈b L, 
bor: p ∨bq, 
deq-fset: deq-fset(eq), 
isl: isl(x), 
decidable__equal_fset, 
decidable_functionality, 
iff_preserves_decidability, 
decidable__and2, 
decidable__f-subset, 
decidable__all_fset, 
decidable__assert, 
fset-null: fset-null(s), 
null: null(as), 
bnot: ¬bb, 
decidable__fset-member, 
deq-fset-member: a ∈b s, 
mk_deq: mk_deq(p), 
union-deq: union-deq(A;B;a;b), 
sumdeq: sumdeq(a;b), 
fset-minimal: fset-minimal(x,y.less[x; y];s;a), 
f-proper-subset-dec: f-proper-subset-dec(eq;xs;ys), 
band: p ∧b q, 
deq-f-subset: deq-f-subset(eq), 
names-deq: NamesDeq, 
int-deq: IntDeq, 
eq_int: (i =z j), 
fset-pair: {a,b}, 
nat: ℕ, 
iff_weakening_uiff, 
fset-all-iff, 
decidable__and
Lemmas referenced : 
nat_wf, 
decidable__equal_fset, 
decidable_functionality, 
iff_preserves_decidability, 
decidable__and2, 
decidable__f-subset, 
decidable__all_fset, 
decidable__assert, 
decidable__fset-member, 
iff_weakening_uiff, 
fset-all-iff, 
decidable__and
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
int_eqReduceTrueSq, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
sqequalAxiom, 
extract_by_obid
Latex:
\mforall{}[i:\mBbbN{}].  (<i>  \mvee{}  ə-i>  \msim{}  \{\{inr  i  \},\{inl  i\}\})
Date html generated:
2018_05_23-AM-08_28_47
Last ObjectModification:
2018_05_20-PM-05_39_01
Theory : cubical!type!theory
Home
Index