Nuprl Lemma : dM-lift-meet

[I,J:fset(ℕ)]. ∀[f:I ⟶ J]. ∀[x,y:Point(dM(J))].
  ((dM-lift(I;J;f) x ∧ y) dM-lift(I;J;f) x ∧ dM-lift(I;J;f) y ∈ Point(dM(I)))


Proof




Definitions occuring in Statement :  dM-lift: dM-lift(I;J;f) names-hom: I ⟶ J dM: dM(I) lattice-meet: a ∧ b lattice-point: Point(l) fset: fset(T) nat: uall: [x:A]. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] so_lambda: λ2x.t[x] subtype_rel: A ⊆B dma-hom: dma-hom(dma1;dma2) bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) names-hom: I ⟶ J so_apply: x[s] prop: implies:  Q and: P ∧ Q DeMorgan-algebra: DeMorganAlgebra guard: {T} uimplies: supposing a
Lemmas referenced :  dM-lift_wf set_wf dma-hom_wf dM_wf all_wf names_wf equal_wf lattice-point_wf dM_inc_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf names-hom_wf fset_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_functionElimination sqequalRule lambdaEquality applyEquality because_Cache setElimination rename lambdaFormation equalitySymmetry productElimination equalityTransitivity independent_functionElimination instantiate productEquality independent_isectElimination cumulativity universeEquality isect_memberEquality axiomEquality

Latex:
\mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[f:I  {}\mrightarrow{}  J].  \mforall{}[x,y:Point(dM(J))].
    ((dM-lift(I;J;f)  x  \mwedge{}  y)  =  dM-lift(I;J;f)  x  \mwedge{}  dM-lift(I;J;f)  y)



Date html generated: 2016_05_18-AM-11_58_12
Last ObjectModification: 2015_12_28-PM-03_08_01

Theory : cubical!type!theory


Home Index