Nuprl Lemma : dM-neg-properties
∀[I:fset(ℕ)]
  ((∀[x,y:Point(dM(I))].  (dm-neg(names(I);NamesDeq;x ∧ y) = ¬(x) ∨ ¬(y) ∈ Point(dM(I))))
  ∧ (∀[x,y:Point(dM(I))].  (dm-neg(names(I);NamesDeq;x ∨ y) = ¬(x) ∧ ¬(y) ∈ Point(dM(I))))
  ∧ (∀[x:Point(dM(I))]. (dm-neg(names(I);NamesDeq;¬(x)) = x ∈ Point(dM(I)))))
Proof
Definitions occuring in Statement : 
dM: dM(I)
, 
names-deq: NamesDeq
, 
names: names(I)
, 
dm-neg: ¬(x)
, 
lattice-join: a ∨ b
, 
lattice-meet: a ∧ b
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
DeMorgan-algebra: DeMorganAlgebra
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
guard: {T}
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
lattice-point: Point(l)
, 
dM: dM(I)
, 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq)
, 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n)
, 
all: ∀x:A. B[x]
, 
top: Top
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
lattice-join: a ∨ b
, 
lattice-meet: a ∧ b
Lemmas referenced : 
dm-neg-neg, 
rec_select_update_lemma, 
nat_wf, 
fset_wf, 
DeMorgan-algebra-axioms_wf, 
lattice-join_wf, 
lattice-meet_wf, 
equal_wf, 
uall_wf, 
bounded-lattice-axioms_wf, 
bounded-lattice-structure_wf, 
subtype_rel_transitivity, 
DeMorgan-algebra-structure-subtype, 
bounded-lattice-structure-subtype, 
lattice-axioms_wf, 
lattice-structure_wf, 
DeMorgan-algebra-structure_wf, 
subtype_rel_set, 
dM_wf, 
lattice-point_wf, 
names-deq_wf, 
names_wf, 
dm-neg-properties
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_pairFormation, 
sqequalRule, 
independent_pairEquality, 
isect_memberEquality, 
axiomEquality, 
applyEquality, 
instantiate, 
lambdaEquality, 
productEquality, 
independent_isectElimination, 
cumulativity, 
universeEquality, 
because_Cache, 
dependent_functionElimination, 
voidElimination, 
voidEquality
Latex:
\mforall{}[I:fset(\mBbbN{})]
    ((\mforall{}[x,y:Point(dM(I))].    (dm-neg(names(I);NamesDeq;x  \mwedge{}  y)  =  \mneg{}(x)  \mvee{}  \mneg{}(y)))
    \mwedge{}  (\mforall{}[x,y:Point(dM(I))].    (dm-neg(names(I);NamesDeq;x  \mvee{}  y)  =  \mneg{}(x)  \mwedge{}  \mneg{}(y)))
    \mwedge{}  (\mforall{}[x:Point(dM(I))].  (dm-neg(names(I);NamesDeq;\mneg{}(x))  =  x)))
Date html generated:
2016_05_18-AM-11_57_35
Last ObjectModification:
2016_04_06-AM-09_49_57
Theory : cubical!type!theory
Home
Index