Nuprl Lemma : dM-neg-properties

[I:fset(ℕ)]
  ((∀[x,y:Point(dM(I))].  (dm-neg(names(I);NamesDeq;x ∧ y) = ¬(x) ∨ ¬(y) ∈ Point(dM(I))))
  ∧ (∀[x,y:Point(dM(I))].  (dm-neg(names(I);NamesDeq;x ∨ y) = ¬(x) ∧ ¬(y) ∈ Point(dM(I))))
  ∧ (∀[x:Point(dM(I))]. (dm-neg(names(I);NamesDeq;¬(x)) x ∈ Point(dM(I)))))


Proof




Definitions occuring in Statement :  dM: dM(I) names-deq: NamesDeq names: names(I) dm-neg: ¬(x) lattice-join: a ∨ b lattice-meet: a ∧ b lattice-point: Point(l) fset: fset(T) nat: uall: [x:A]. B[x] and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q subtype_rel: A ⊆B DeMorgan-algebra: DeMorganAlgebra so_lambda: λ2x.t[x] prop: guard: {T} uimplies: supposing a so_apply: x[s] lattice-point: Point(l) dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) all: x:A. B[x] top: Top eq_atom: =a y ifthenelse: if then else fi  bfalse: ff lattice-join: a ∨ b lattice-meet: a ∧ b
Lemmas referenced :  dm-neg-neg rec_select_update_lemma nat_wf fset_wf DeMorgan-algebra-axioms_wf lattice-join_wf lattice-meet_wf equal_wf uall_wf bounded-lattice-axioms_wf bounded-lattice-structure_wf subtype_rel_transitivity DeMorgan-algebra-structure-subtype bounded-lattice-structure-subtype lattice-axioms_wf lattice-structure_wf DeMorgan-algebra-structure_wf subtype_rel_set dM_wf lattice-point_wf names-deq_wf names_wf dm-neg-properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination independent_pairFormation sqequalRule independent_pairEquality isect_memberEquality axiomEquality applyEquality instantiate lambdaEquality productEquality independent_isectElimination cumulativity universeEquality because_Cache dependent_functionElimination voidElimination voidEquality

Latex:
\mforall{}[I:fset(\mBbbN{})]
    ((\mforall{}[x,y:Point(dM(I))].    (dm-neg(names(I);NamesDeq;x  \mwedge{}  y)  =  \mneg{}(x)  \mvee{}  \mneg{}(y)))
    \mwedge{}  (\mforall{}[x,y:Point(dM(I))].    (dm-neg(names(I);NamesDeq;x  \mvee{}  y)  =  \mneg{}(x)  \mwedge{}  \mneg{}(y)))
    \mwedge{}  (\mforall{}[x:Point(dM(I))].  (dm-neg(names(I);NamesDeq;\mneg{}(x))  =  x)))



Date html generated: 2016_05_18-AM-11_57_35
Last ObjectModification: 2016_04_06-AM-09_49_57

Theory : cubical!type!theory


Home Index