Nuprl Lemma : dM-to-FL-neg-is-1

[I:fset(ℕ)]
  ∀x:Point(free-DeMorgan-lattice(names(I);NamesDeq))
    dM-to-FL(I;x) 0 ∈ Point(face_lattice(I)) supposing dM-to-FL(I;¬(x)) 1 ∈ Point(face_lattice(I))


Proof




Definitions occuring in Statement :  dM-to-FL: dM-to-FL(I;z) face_lattice: face_lattice(I) names-deq: NamesDeq names: names(I) dm-neg: ¬(x) free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) lattice-0: 0 lattice-1: 1 lattice-point: Point(l) fset: fset(T) nat: uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a lattice-point: Point(l) record-select: r.x free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) DeMorgan-algebra: DeMorganAlgebra guard: {T} squash: T true: True iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  dM-to-FL-neg2 lattice-point_wf free-DeMorgan-lattice_wf names_wf names-deq_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf fset_wf nat_wf face_lattice_wf dM-to-FL_wf dm-neg_wf subtype_rel-equal dM_wf DeMorgan-algebra-structure_wf DeMorgan-algebra-structure-subtype subtype_rel_transitivity DeMorgan-algebra-axioms_wf lattice-1_wf bdd-distributive-lattice_wf squash_wf true_wf iff_weakening_equal lattice-1-meet bdd-distributive-lattice-subtype-bdd-lattice
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation dependent_functionElimination because_Cache applyEquality sqequalRule instantiate lambdaEquality productEquality cumulativity universeEquality independent_isectElimination setElimination rename hyp_replacement equalitySymmetry imageElimination equalityTransitivity natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination

Latex:
\mforall{}[I:fset(\mBbbN{})]
    \mforall{}x:Point(free-DeMorgan-lattice(names(I);NamesDeq))
        dM-to-FL(I;x)  =  0  supposing  dM-to-FL(I;\mneg{}(x))  =  1



Date html generated: 2017_10_05-AM-01_13_03
Last ObjectModification: 2017_07_28-AM-09_30_40

Theory : cubical!type!theory


Home Index