Nuprl Lemma : dM-to-FL-properties

[I:fset(ℕ)]
  ((∀x,y:Point(free-DeMorgan-lattice(names(I);NamesDeq)).
      (dM-to-FL(I;x ∨ y) dM-to-FL(I;x) ∨ dM-to-FL(I;y) ∈ Point(face_lattice(I))))
  ∧ (∀x,y:Point(free-DeMorgan-lattice(names(I);NamesDeq)).
       (dM-to-FL(I;x ∧ y) dM-to-FL(I;x) ∧ dM-to-FL(I;y) ∈ Point(face_lattice(I))))
  ∧ (dM-to-FL(I;0) 0 ∈ Point(face_lattice(I)))
  ∧ (dM-to-FL(I;1) 1 ∈ Point(face_lattice(I))))


Proof




Definitions occuring in Statement :  dM-to-FL: dM-to-FL(I;z) face_lattice: face_lattice(I) names-deq: NamesDeq names: names(I) free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) lattice-0: 0 lattice-1: 1 lattice-join: a ∨ b lattice-meet: a ∧ b lattice-point: Point(l) fset: fset(T) nat: uall: [x:A]. B[x] all: x:A. B[x] and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B all: x:A. B[x] subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: so_apply: x[s] uimplies: supposing a dM-to-FL: dM-to-FL(I;z) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum lattice-0: 0 record-select: r.x free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt empty-fset: {} nil: [] it: face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) implies:  Q bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) true: True squash: T guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  dM-to-FL-is-hom lattice-point_wf free-DeMorgan-lattice_wf names_wf names-deq_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf lattice-0_wf face_lattice_wf bdd-distributive-lattice_wf fset_wf nat_wf bounded-lattice-hom_wf squash_wf true_wf iff_weakening_equal
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation because_Cache applyEquality sqequalRule instantiate lambdaEquality productEquality cumulativity universeEquality independent_isectElimination independent_pairFormation setElimination rename equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination productElimination equalityUniverse levelHypothesis functionExtensionality natural_numberEquality imageElimination imageMemberEquality baseClosed

Latex:
\mforall{}[I:fset(\mBbbN{})]
    ((\mforall{}x,y:Point(free-DeMorgan-lattice(names(I);NamesDeq)).
            (dM-to-FL(I;x  \mvee{}  y)  =  dM-to-FL(I;x)  \mvee{}  dM-to-FL(I;y)))
    \mwedge{}  (\mforall{}x,y:Point(free-DeMorgan-lattice(names(I);NamesDeq)).
              (dM-to-FL(I;x  \mwedge{}  y)  =  dM-to-FL(I;x)  \mwedge{}  dM-to-FL(I;y)))
    \mwedge{}  (dM-to-FL(I;0)  =  0)
    \mwedge{}  (dM-to-FL(I;1)  =  1))



Date html generated: 2017_10_05-AM-01_12_03
Last ObjectModification: 2017_07_28-AM-09_30_18

Theory : cubical!type!theory


Home Index