Nuprl Lemma : dM-to-FL-properties
∀[I:fset(ℕ)]
  ((∀x,y:Point(free-DeMorgan-lattice(names(I);NamesDeq)).
      (dM-to-FL(I;x ∨ y) = dM-to-FL(I;x) ∨ dM-to-FL(I;y) ∈ Point(face_lattice(I))))
  ∧ (∀x,y:Point(free-DeMorgan-lattice(names(I);NamesDeq)).
       (dM-to-FL(I;x ∧ y) = dM-to-FL(I;x) ∧ dM-to-FL(I;y) ∈ Point(face_lattice(I))))
  ∧ (dM-to-FL(I;0) = 0 ∈ Point(face_lattice(I)))
  ∧ (dM-to-FL(I;1) = 1 ∈ Point(face_lattice(I))))
Proof
Definitions occuring in Statement : 
dM-to-FL: dM-to-FL(I;z), 
face_lattice: face_lattice(I), 
names-deq: NamesDeq, 
names: names(I), 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq), 
lattice-0: 0, 
lattice-1: 1, 
lattice-join: a ∨ b, 
lattice-meet: a ∧ b, 
lattice-point: Point(l), 
fset: fset(T), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
and: P ∧ Q, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
and: P ∧ Q, 
cand: A c∧ B, 
all: ∀x:A. B[x], 
subtype_rel: A ⊆r B, 
bdd-distributive-lattice: BoundedDistributiveLattice, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
so_apply: x[s], 
uimplies: b supposing a, 
dM-to-FL: dM-to-FL(I;z), 
lattice-extend: lattice-extend(L;eq;eqL;f;ac), 
lattice-fset-join: \/(s), 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
fset-image: f"(s), 
f-union: f-union(domeq;rngeq;s;x.g[x]), 
list_accum: list_accum, 
lattice-0: 0, 
record-select: r.x, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq), 
free-dist-lattice: free-dist-lattice(T; eq), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
empty-fset: {}, 
nil: [], 
it: ⋅, 
face_lattice: face_lattice(I), 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
implies: P ⇒ Q, 
bounded-lattice-hom: Hom(l1;l2), 
lattice-hom: Hom(l1;l2), 
true: True, 
squash: ↓T, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
dM-to-FL-is-hom, 
lattice-point_wf, 
free-DeMorgan-lattice_wf, 
names_wf, 
names-deq_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
lattice-0_wf, 
face_lattice_wf, 
bdd-distributive-lattice_wf, 
fset_wf, 
nat_wf, 
bounded-lattice-hom_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation, 
because_Cache, 
applyEquality, 
sqequalRule, 
instantiate, 
lambdaEquality, 
productEquality, 
cumulativity, 
universeEquality, 
independent_isectElimination, 
independent_pairFormation, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
productElimination, 
equalityUniverse, 
levelHypothesis, 
functionExtensionality, 
natural_numberEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[I:fset(\mBbbN{})]
    ((\mforall{}x,y:Point(free-DeMorgan-lattice(names(I);NamesDeq)).
            (dM-to-FL(I;x  \mvee{}  y)  =  dM-to-FL(I;x)  \mvee{}  dM-to-FL(I;y)))
    \mwedge{}  (\mforall{}x,y:Point(free-DeMorgan-lattice(names(I);NamesDeq)).
              (dM-to-FL(I;x  \mwedge{}  y)  =  dM-to-FL(I;x)  \mwedge{}  dM-to-FL(I;y)))
    \mwedge{}  (dM-to-FL(I;0)  =  0)
    \mwedge{}  (dM-to-FL(I;1)  =  1))
Date html generated:
2017_10_05-AM-01_12_03
Last ObjectModification:
2017_07_28-AM-09_30_18
Theory : cubical!type!theory
Home
Index