Nuprl Lemma : dM1-meet
∀[I:fset(ℕ)]. ∀[x:Point(dM(I))].  (1 ∧ x = x ∈ Point(dM(I)))
Proof
Definitions occuring in Statement : 
dM1: 1, 
dM: dM(I), 
lattice-meet: a ∧ b, 
lattice-point: Point(l), 
fset: fset(T), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
dM1: 1, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
squash: ↓T, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
DeMorgan-algebra: DeMorganAlgebra, 
so_lambda: λ2x.t[x], 
and: P ∧ Q, 
guard: {T}, 
uimplies: b supposing a, 
so_apply: x[s], 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
lattice-point_wf, 
dM_wf, 
subtype_rel_set, 
DeMorgan-algebra-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
bounded-lattice-structure_wf, 
bounded-lattice-axioms_wf, 
uall_wf, 
lattice-meet_wf, 
lattice-join_wf, 
DeMorgan-algebra-axioms_wf, 
lattice-1-meet, 
bdd-distributive-lattice-subtype-bdd-lattice, 
DeMorgan-algebra-subtype, 
DeMorgan-algebra_wf, 
bdd-distributive-lattice_wf, 
bdd-lattice_wf, 
iff_weakening_equal, 
fset_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
applyEquality, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeEquality, 
instantiate, 
productEquality, 
independent_isectElimination, 
cumulativity, 
because_Cache, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[x:Point(dM(I))].    (1  \mwedge{}  x  =  x)
Date html generated:
2018_05_23-AM-08_27_18
Last ObjectModification:
2017_11_29-PM-02_22_26
Theory : cubical!type!theory
Home
Index