Nuprl Lemma : discrete-function_wf

[A:Type]. ∀[B:A ⟶ Type]. ∀[X:j⊢]. ∀[f:{X ⊢ _:Πdiscr(A) discrete-family(A;a.B[a])}].
  (discrete-function(f) ∈ {X ⊢ _:discr(a:A ⟶ B[a])})


Proof




Definitions occuring in Statement :  discrete-function: discrete-function(f) discrete-family: discrete-family(A;a.B[a]) discrete-cubical-type: discr(T) cubical-pi: ΠB cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T discrete-function: discrete-function(f) cubical-term: {X ⊢ _:A} discrete-cubical-type: discr(T) all: x:A. B[x] so_apply: x[s] so_lambda: λ2x.t[x] cubical-pi: ΠB cubical-pi-family: cubical-pi-family(X;A;B;I;a) subtype_rel: A ⊆B cc-adjoin-cube: (v;u) discrete-family: discrete-family(A;a.B[a]) pi2: snd(t) squash: T prop: true: True implies:  Q uimplies: supposing a cubical-type-at: A(a) pi1: fst(t) cube-context-adjoin: X.A guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  cubical_type_at_pair_lemma cubical_type_ap_morph_pair_lemma fset_wf nat_wf names-hom_wf I_cube_wf istype-cubical-type-at cube-set-restriction_wf discrete-cubical-type_wf cubical-type-ap-morph_wf cubical-term_wf cubical-pi_wf discrete-family_wf cubical_set_wf istype-universe nh-id_wf equal_wf squash_wf true_wf subtype_rel-equal cubical-type-at_wf cube_set_restriction_pair_lemma nh-id-left nh-comp_wf subtype_rel_self iff_weakening_equal nh-id-right
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut dependent_set_memberEquality_alt sqequalRule extract_by_obid sqequalHypSubstitution dependent_functionElimination thin Error :memTop,  hypothesis functionIsType universeIsType isectElimination because_Cache hypothesisEquality equalityIstype functionEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry instantiate cumulativity lambdaEquality_alt isect_memberEquality_alt isectIsTypeImplies inhabitedIsType universeEquality setElimination rename functionExtensionality hyp_replacement lambdaFormation_alt applyLambdaEquality imageMemberEquality baseClosed imageElimination natural_numberEquality independent_functionElimination independent_isectElimination productElimination

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[X:j\mvdash{}].  \mforall{}[f:\{X  \mvdash{}  \_:\mPi{}discr(A)  discrete-family(A;a.B[a])\}].
    (discrete-function(f)  \mmember{}  \{X  \mvdash{}  \_:discr(a:A  {}\mrightarrow{}  B[a])\})



Date html generated: 2020_05_20-PM-03_38_52
Last ObjectModification: 2020_04_07-PM-04_29_33

Theory : cubical!type!theory


Home Index