Nuprl Lemma : discrete-sigma-bijection

[A:Type]. ∀[B:A ⟶ Type].  ∀X:j⊢{X ⊢ _:Σ discr(A) discrete-family(A;a.B[a])} {X ⊢ _:discr(a:A × B[a])}


Proof




Definitions occuring in Statement :  discrete-family: discrete-family(A;a.B[a]) discrete-cubical-type: discr(T) cubical-sigma: Σ B cubical-term: {X ⊢ _:A} cubical_set: CubicalSet equipollent: B uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] equipollent: B exists: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B biject: Bij(A;B;f) and: P ∧ Q inject: Inj(A;B;f) implies:  Q surject: Surj(A;B;f) prop: uimplies: supposing a
Lemmas referenced :  discrete-pair_wf cubical_set_cumulativity-i-j cubical-term_wf cubical-sigma_wf discrete-cubical-type_wf discrete-family_wf biject_wf cubical_set_wf istype-universe discrete-pair-injection discrete-pair-inv_wf discrete-pair-inv-property
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt dependent_pairFormation_alt lambdaEquality_alt cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesisEquality sqequalRule applyEquality universeIsType hypothesis independent_pairFormation equalityIstype productEquality because_Cache inhabitedIsType functionIsType universeEquality dependent_functionElimination independent_isectElimination

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].
    \mforall{}X:j\mvdash{}.  \{X  \mvdash{}  \_:\mSigma{}  discr(A)  discrete-family(A;a.B[a])\}  \msim{}  \{X  \mvdash{}  \_:discr(a:A  \mtimes{}  B[a])\}



Date html generated: 2020_05_20-PM-03_41_23
Last ObjectModification: 2020_04_06-PM-07_13_26

Theory : cubical!type!theory


Home Index