Nuprl Lemma : empty-context-eq-lemma

[Gamma:j⊢]. ∀[A,x,y:Top].  (x y ∈ {Gamma ⊢ _:A}) supposing ∀I:fset(ℕ). Gamma(I))


Proof




Definitions occuring in Statement :  cubical-term: {X ⊢ _:A} I_cube: A(I) cubical_set: CubicalSet fset: fset(T) nat: uimplies: supposing a uall: [x:A]. B[x] top: Top all: x:A. B[x] not: ¬A equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a all: x:A. B[x] member: t ∈ T not: ¬A implies:  Q false: False cubical-term: {X ⊢ _:A}
Lemmas referenced :  istype-top fset_wf nat_wf I_cube_wf istype-void cubical_set_wf names-hom_wf istype-cubical-type-at cube-set-restriction_wf cubical-type-ap-morph_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt because_Cache cut introduction extract_by_obid hypothesis sqequalRule functionIsType universeIsType sqequalHypSubstitution isectElimination thin hypothesisEquality instantiate functionExtensionality dependent_functionElimination functionExtensionality_alt independent_functionElimination voidElimination lambdaFormation_alt dependent_set_memberEquality_alt equalityIstype applyEquality

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A,x,y:Top].    (x  =  y)  supposing  \mforall{}I:fset(\mBbbN{}).  (\mneg{}Gamma(I))



Date html generated: 2020_05_20-PM-04_12_06
Last ObjectModification: 2020_04_10-PM-04_40_54

Theory : cubical!type!theory


Home Index