Nuprl Lemma : empty-context-eq-lemma
∀[Gamma:j⊢]. ∀[A,x,y:Top].  (x = y ∈ {Gamma ⊢ _:A}) supposing ∀I:fset(ℕ). (¬Gamma(I))
Proof
Definitions occuring in Statement : 
cubical-term: {X ⊢ _:A}
, 
I_cube: A(I)
, 
cubical_set: CubicalSet
, 
fset: fset(T)
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
cubical-term: {X ⊢ _:A}
Lemmas referenced : 
istype-top, 
fset_wf, 
nat_wf, 
I_cube_wf, 
istype-void, 
cubical_set_wf, 
names-hom_wf, 
istype-cubical-type-at, 
cube-set-restriction_wf, 
cubical-type-ap-morph_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
because_Cache, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
functionIsType, 
universeIsType, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
instantiate, 
functionExtensionality, 
dependent_functionElimination, 
functionExtensionality_alt, 
independent_functionElimination, 
voidElimination, 
lambdaFormation_alt, 
dependent_set_memberEquality_alt, 
equalityIstype, 
applyEquality
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A,x,y:Top].    (x  =  y)  supposing  \mforall{}I:fset(\mBbbN{}).  (\mneg{}Gamma(I))
Date html generated:
2020_05_20-PM-04_12_06
Last ObjectModification:
2020_04_10-PM-04_40_54
Theory : cubical!type!theory
Home
Index