Nuprl Lemma : equiv-bijection-equiv

[A,B:Type]. ∀[e:A B].
  ((((λe.<equiv-bijection(e), equiv-bijection-is(e)>e.bijection-equiv(();A;B;fst(e);bij_inv(snd(e))))) e)
  e
  ∈ B)


Proof




Definitions occuring in Statement :  equiv-bijection-is: equiv-bijection-is(e) equiv-bijection: equiv-bijection(e) bijection-equiv: bijection-equiv(X;A;B;f;g) trivial-cube-set: () equipollent: B bij_inv: bij_inv(bi) compose: g uall: [x:A]. B[x] pi1: fst(t) pi2: snd(t) apply: a lambda: λx.A[x] pair: <a, b> universe: Type equal: t ∈ T
Definitions unfolded in proof :  bijection-equiv: bijection-equiv(X;A;B;f;g) equiv-bijection: equiv-bijection(e) compose: g equiv-witness: equiv-witness(f;cntr) equiv-fun: equiv-fun(f) discrete-fun: discrete-fun(f) cubical-lam: cubical-lam(X;b) cubical-lambda: b) cubical-pair: cubical-pair(u;v) cubical-fst: p.1 cubical-term-at: u(a) pi1: fst(t) trivial-cube-set: () cc-adjoin-cube: (v;u) equiv-bijection-is: equiv-bijection-is(e) pi2: snd(t) all: x:A. B[x] member: t ∈ T top: Top equiv-contr: equiv-contr(f;a) fiber-point: fiber-point(t;c) contr-witness: contr-witness(X;c;p) cubical-snd: p.2 cubical-app: app(w; u) discrete-cubical-term: discr(t) uall: [x:A]. B[x] equipollent: B exists: x:A. B[x] squash: T prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q biject: Bij(A;B;f) surject: Surj(A;B;f) inject: Inj(A;B;f) bij_inv: bij_inv(bi) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  cube_set_restriction_pair_lemma equipollent_wf equal_wf squash_wf true_wf eta_conv iff_weakening_equal biject_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation isectElimination cumulativity hypothesisEquality axiomEquality because_Cache universeEquality productElimination dependent_pairEquality applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry natural_numberEquality imageMemberEquality baseClosed independent_isectElimination independent_functionElimination independent_pairEquality functionExtensionality productEquality functionEquality lambdaFormation equalityElimination

Latex:
\mforall{}[A,B:Type].  \mforall{}[e:A  \msim{}  B].
    ((((\mlambda{}e.<equiv-bijection(e),  equiv-bijection-is(e)>)
          o  (\mlambda{}e.bijection-equiv(();A;B;fst(e);bij\_inv(snd(e))))) 
        e)
    =  e)



Date html generated: 2017_10_05-AM-02_18_12
Last ObjectModification: 2017_03_02-PM-11_26_24

Theory : cubical!type!theory


Home Index