Nuprl Lemma : equiv-bijection-equiv
∀[A,B:Type]. ∀[e:A ~ B].
  ((((λe.<equiv-bijection(e), equiv-bijection-is(e)>) o (λe.bijection-equiv(();A;B;fst(e);bij_inv(snd(e))))) e)
  = e
  ∈ A ~ B)
Proof
Definitions occuring in Statement : 
equiv-bijection-is: equiv-bijection-is(e)
, 
equiv-bijection: equiv-bijection(e)
, 
bijection-equiv: bijection-equiv(X;A;B;f;g)
, 
trivial-cube-set: ()
, 
equipollent: A ~ B
, 
bij_inv: bij_inv(bi)
, 
compose: f o g
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
apply: f a
, 
lambda: λx.A[x]
, 
pair: <a, b>
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
bijection-equiv: bijection-equiv(X;A;B;f;g)
, 
equiv-bijection: equiv-bijection(e)
, 
compose: f o g
, 
equiv-witness: equiv-witness(f;cntr)
, 
equiv-fun: equiv-fun(f)
, 
discrete-fun: discrete-fun(f)
, 
cubical-lam: cubical-lam(X;b)
, 
cubical-lambda: (λb)
, 
cubical-pair: cubical-pair(u;v)
, 
cubical-fst: p.1
, 
cubical-term-at: u(a)
, 
pi1: fst(t)
, 
trivial-cube-set: ()
, 
cc-adjoin-cube: (v;u)
, 
equiv-bijection-is: equiv-bijection-is(e)
, 
pi2: snd(t)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
top: Top
, 
equiv-contr: equiv-contr(f;a)
, 
fiber-point: fiber-point(t;c)
, 
contr-witness: contr-witness(X;c;p)
, 
cubical-snd: p.2
, 
cubical-app: app(w; u)
, 
discrete-cubical-term: discr(t)
, 
uall: ∀[x:A]. B[x]
, 
equipollent: A ~ B
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
biject: Bij(A;B;f)
, 
surject: Surj(A;B;f)
, 
inject: Inj(A;B;f)
, 
bij_inv: bij_inv(bi)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
cube_set_restriction_pair_lemma, 
equipollent_wf, 
equal_wf, 
squash_wf, 
true_wf, 
eta_conv, 
iff_weakening_equal, 
biject_wf, 
exists_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isect_memberFormation, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
axiomEquality, 
because_Cache, 
universeEquality, 
productElimination, 
dependent_pairEquality, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
independent_functionElimination, 
independent_pairEquality, 
functionExtensionality, 
productEquality, 
functionEquality, 
lambdaFormation, 
equalityElimination
Latex:
\mforall{}[A,B:Type].  \mforall{}[e:A  \msim{}  B].
    ((((\mlambda{}e.<equiv-bijection(e),  equiv-bijection-is(e)>)
          o  (\mlambda{}e.bijection-equiv(();A;B;fst(e);bij\_inv(snd(e))))) 
        e)
    =  e)
Date html generated:
2017_10_05-AM-02_18_12
Last ObjectModification:
2017_03_02-PM-11_26_24
Theory : cubical!type!theory
Home
Index