Nuprl Lemma : equiv-path_wf
∀[G:j⊢]. ∀[A,B:{G ⊢ _:c𝕌}]. ∀[f:{G ⊢ _:Equiv(decode(A);decode(B))}].  (EquivPath(G;A;B;f) ∈ {G ⊢ _:(Path_c𝕌 A B)})
Proof
Definitions occuring in Statement : 
equiv-path: EquivPath(G;A;B;f)
, 
universe-decode: decode(t)
, 
cubical-universe: c𝕌
, 
cubical-equiv: Equiv(T;A)
, 
path-type: (Path_A a b)
, 
cubical-term: {X ⊢ _:A}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
equiv-path: EquivPath(G;A;B;f)
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
Lemmas referenced : 
term-to-path-wf, 
cubical-universe_wf, 
csm-cubical-universe, 
equiv_path_wf, 
equiv_path-1, 
equiv_path-0, 
istype-cubical-term, 
cubical-equiv_wf, 
universe-decode_wf, 
istype-cubical-universe-term, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
Error :memTop, 
dependent_functionElimination, 
independent_isectElimination, 
universeIsType
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G  \mvdash{}  \_:c\mBbbU{}\}].  \mforall{}[f:\{G  \mvdash{}  \_:Equiv(decode(A);decode(B))\}].
    (EquivPath(G;A;B;f)  \mmember{}  \{G  \mvdash{}  \_:(Path\_c\mBbbU{}  A  B)\})
Date html generated:
2020_05_20-PM-07_30_30
Last ObjectModification:
2020_04_28-PM-10_11_18
Theory : cubical!type!theory
Home
Index