Nuprl Lemma : equiv-path_wf

[G:j⊢]. ∀[A,B:{G ⊢ _:c𝕌}]. ∀[f:{G ⊢ _:Equiv(decode(A);decode(B))}].  (EquivPath(G;A;B;f) ∈ {G ⊢ _:(Path_c𝕌 B)})


Proof




Definitions occuring in Statement :  equiv-path: EquivPath(G;A;B;f) universe-decode: decode(t) cubical-universe: c𝕌 cubical-equiv: Equiv(T;A) path-type: (Path_A b) cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] equiv-path: EquivPath(G;A;B;f) member: t ∈ T all: x:A. B[x] uimplies: supposing a
Lemmas referenced :  term-to-path-wf cubical-universe_wf csm-cubical-universe equiv_path_wf equiv_path-1 equiv_path-0 istype-cubical-term cubical-equiv_wf universe-decode_wf istype-cubical-universe-term cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination because_Cache hypothesisEquality hypothesis sqequalRule Error :memTop,  dependent_functionElimination independent_isectElimination universeIsType

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G  \mvdash{}  \_:c\mBbbU{}\}].  \mforall{}[f:\{G  \mvdash{}  \_:Equiv(decode(A);decode(B))\}].
    (EquivPath(G;A;B;f)  \mmember{}  \{G  \mvdash{}  \_:(Path\_c\mBbbU{}  A  B)\})



Date html generated: 2020_05_20-PM-07_30_30
Last ObjectModification: 2020_04_28-PM-10_11_18

Theory : cubical!type!theory


Home Index