Nuprl Lemma : equiv_path-0
∀[G:j⊢]. ∀[A,B:{G ⊢ _:c𝕌}]. ∀[f:{G ⊢ _:Equiv(decode(A);decode(B))}].  G ⊢ (equiv_path(G;A;B;f))[0(𝕀)]=A:c𝕌
Proof
Definitions occuring in Statement : 
equiv_path: equiv_path(G;A;B;f)
, 
universe-decode: decode(t)
, 
cubical-universe: c𝕌
, 
cubical-equiv: Equiv(T;A)
, 
same-cubical-term: X ⊢ u=v:A
, 
interval-0: 0(𝕀)
, 
csm-id-adjoin: [u]
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
same-cubical-term: X ⊢ u=v:A
, 
equiv_path: equiv_path(G;A;B;f)
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
let: let, 
prop: ℙ
, 
squash: ↓T
, 
true: True
, 
csm-comp-structure: (cA)tau
, 
interval-0: 0(𝕀)
, 
csm-id-adjoin: [u]
, 
interval-type: 𝕀
, 
csm-comp: G o F
, 
csm-id: 1(X)
, 
csm-adjoin: (s;u)
, 
compose: f o g
, 
csm-ap: (s)x
, 
guard: {T}
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
universe-comp-fun: CompFun(A)
Lemmas referenced : 
equiv-path2_wf, 
universe-decode_wf, 
universe-comp-fun_wf, 
cubical_set_cumulativity-i-j, 
comp-fun-to-comp-op_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
equiv-path1_wf, 
composition-structure-cumulativity, 
csm-universe-encode, 
csm-id-adjoin_wf, 
interval-0_wf, 
same-cubical-term_wf, 
cubical-universe_wf, 
cubical-type-cumulativity2, 
istype-cubical-term, 
cubical-equiv_wf, 
istype-cubical-universe-term, 
cubical_set_wf, 
universe-encode-decode, 
squash_wf, 
true_wf, 
cubical-type_wf, 
universe-encode_wf, 
composition-op_wf, 
equiv-path1-0, 
subtype_rel_self, 
composition-structure_wf, 
csm-comp-structure_wf, 
csm-id-adjoin_wf-interval-0, 
equiv-path2-0, 
csm-comp-fun-to-comp-op, 
equal_wf, 
istype-universe, 
csm-ap-type_wf, 
universe-comp-op_wf, 
subtype_rel-equal, 
iff_weakening_equal, 
comp-op-to-comp-fun-inverse
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
hypothesis, 
instantiate, 
applyEquality, 
sqequalRule, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType, 
lambdaFormation_alt, 
rename, 
dependent_functionElimination, 
hyp_replacement, 
applyLambdaEquality, 
equalityIstype, 
independent_functionElimination, 
universeIsType, 
lambdaEquality_alt, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_isectElimination, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
productIsType, 
setElimination, 
productElimination
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G  \mvdash{}  \_:c\mBbbU{}\}].  \mforall{}[f:\{G  \mvdash{}  \_:Equiv(decode(A);decode(B))\}].
    G  \mvdash{}  (equiv\_path(G;A;B;f))[0(\mBbbI{})]=A:c\mBbbU{}
Date html generated:
2020_05_20-PM-07_29_58
Last ObjectModification:
2020_04_28-PM-07_05_14
Theory : cubical!type!theory
Home
Index