Nuprl Lemma : equiv-path2_wf
∀[G:j⊢]. ∀[A,B:{G ⊢ _}]. ∀[cA:G +⊢ Compositon(A)]. ∀[cB:G +⊢ Compositon(B)]. ∀[f:{G ⊢ _:Equiv(A;B)}].
  (equiv-path2(G;A;B;cA;cB;f) ∈ G.𝕀 +⊢ Compositon(equiv-path1(G;A;B;f)))
Proof
Definitions occuring in Statement : 
equiv-path2: equiv-path2(G;A;B;cA;cB;f), 
equiv-path1: equiv-path1(G;A;B;f), 
composition-structure: Gamma ⊢ Compositon(A), 
cubical-equiv: Equiv(T;A), 
interval-type: 𝕀, 
cube-context-adjoin: X.A, 
cubical-term: {X ⊢ _:A}, 
cubical-type: {X ⊢ _}, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
equiv-path2: equiv-path2(G;A;B;cA;cB;f), 
equiv-path1: equiv-path1(G;A;B;f), 
cc-snd: q, 
interval-type: 𝕀, 
cc-fst: p, 
csm-ap-type: (AF)s, 
constant-cubical-type: (X), 
guard: {T}
Lemmas referenced : 
csm-ap-type_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
cc-fst_wf_interval, 
subset-cubical-type, 
context-subset_wf, 
context-subset-is-subset, 
istype-cubical-term, 
face-type_wf, 
case-type-comp-disjoint, 
face-zero_wf, 
cc-snd_wf, 
face-one_wf, 
csm-comp-structure_wf, 
composition-structure-subset, 
cubical_set_cumulativity-i-j, 
face-term-0-and-1, 
glue-comp_wf2, 
csm-comp-structure_wf2, 
face-or_wf, 
case-type_wf, 
same-cubical-type-zero-and-one, 
face-0_wf, 
cubical-equiv-by-cases_wf, 
cubical-equiv_wf, 
composition-structure_wf, 
cubical-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
lambdaFormation_alt, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
instantiate, 
hypothesis, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
sqequalRule, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
universeIsType
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G  \mvdash{}  \_\}].  \mforall{}[cA:G  +\mvdash{}  Compositon(A)].  \mforall{}[cB:G  +\mvdash{}  Compositon(B)].
\mforall{}[f:\{G  \mvdash{}  \_:Equiv(A;B)\}].
    (equiv-path2(G;A;B;cA;cB;f)  \mmember{}  G.\mBbbI{}  +\mvdash{}  Compositon(equiv-path1(G;A;B;f)))
Date html generated:
2020_05_20-PM-07_27_57
Last ObjectModification:
2020_04_28-PM-04_28_42
Theory : cubical!type!theory
Home
Index