Nuprl Lemma : glue-comp_wf2
∀G:j⊢. ∀A:{G ⊢ _}. ∀cA:G +⊢ Compositon(A). ∀psi:{G ⊢ _:𝔽}. ∀T:{G, psi ⊢ _}. ∀cT:G, psi +⊢ Compositon(T).
∀f:{G, psi ⊢ _:Equiv(T;A)}.
  (comp(Glue [psi ⊢→ (T, f)] A)  ∈ G ⊢ Compositon(Glue [psi ⊢→ (T;equiv-fun(f))] A))
Proof
Definitions occuring in Statement : 
glue-comp: comp(Glue [phi ⊢→ (T, f)] A) 
, 
glue-type: Glue [phi ⊢→ (T;w)] A
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
equiv-fun: equiv-fun(f)
, 
cubical-equiv: Equiv(T;A)
, 
context-subset: Gamma, phi
, 
face-type: 𝔽
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp)
, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
, 
glue-comp: comp(Glue [phi ⊢→ (T, f)] A) 
, 
uall: ∀[x:A]. B[x]
, 
interval-type: 𝕀
, 
csm+: tau+
, 
csm-ap-term: (t)s
, 
csm-comp: G o F
, 
cc-snd: q
, 
cc-fst: p
, 
constant-cubical-type: (X)
, 
csm-ap-type: (AF)s
, 
csm-adjoin: (s;u)
, 
csm-ap: (s)x
, 
compose: f o g
, 
interval-0: 0(𝕀)
, 
csm-id-adjoin: [u]
, 
csm-id: 1(X)
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
squash: ↓T
, 
prop: ℙ
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
csm-comp-structure: (cA)tau
, 
composition-function: composition-function{j:l,i:l}(Gamma;A)
, 
let: let, 
partial-term-0: u[0]
, 
partial-term-1: u[1]
, 
interval-1: 1(𝕀)
, 
cubical-type: {X ⊢ _}
, 
glue-type: Glue [phi ⊢→ (T;w)] A
, 
same-cubical-type: Gamma ⊢ A = B
, 
case-term: (u ∨ v)
, 
context-subset: Gamma, phi
, 
cubical-type-at: A(a)
, 
face-type: 𝔽
, 
I_cube: A(I)
, 
functor-ob: ob(F)
, 
face-presheaf: 𝔽
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
face_lattice: face_lattice(I)
, 
face-lattice: face-lattice(T;eq)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
uiff: uiff(P;Q)
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
, 
respects-equality: respects-equality(S;T)
, 
same-cubical-term: X ⊢ u=v:A
, 
face-term-implies: Gamma ⊢ (phi 
⇒ psi)
, 
face-or: (a ∨ b)
, 
face-and: (a ∧ b)
, 
cubical-term-at: u(a)
, 
pres-c1: pres-c1(G;phi;f;t;t0;cA)
, 
pres-c2: pres-c2(G;phi;f;t;t0;cT)
, 
fiber-point: fiber-point(t;c)
, 
fiber-path: fiber-path(p)
, 
cubical-pair: cubical-pair(u;v)
, 
cubical-snd: p.2
, 
cube-context-adjoin: X.A
, 
cubical-path-app: pth @ r
, 
path-eta: path-eta(pth)
Lemmas referenced : 
glue-comp_wf, 
csm-unglue, 
glue-type_wf, 
equiv-fun_wf, 
context-subset_wf, 
thin-context-subset, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
cubical-type_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
csm-glue-type, 
csm-ap-type_wf, 
csm-ap-term_wf, 
face-type_wf, 
csm-face-type, 
context-subset-map, 
csm-cubical-fun, 
cubical-term-eqcd, 
cubical-fun_wf, 
subtype_rel_self, 
iff_weakening_equal, 
subset-cubical-term2, 
cc-fst_wf_interval, 
context-adjoin-subset1, 
thin-context-subset-adjoin, 
subset-cubical-type, 
sub_cubical_set_functionality, 
context-subset-is-subset, 
equal_functionality_wrt_subtype_rel2, 
context-subset-term-subtype, 
sub_cubical_set_functionality2, 
csm-id-adjoin_wf, 
interval-0_wf, 
cubical_set_cumulativity-i-j, 
csm-id-adjoin_wf-interval-0, 
sub_cubical_set_self, 
sub_cubical_set_transitivity, 
face-forall_wf, 
subset-cubical-term, 
context-adjoin-subset2, 
csm-context-subset-subtype2, 
face-term-implies-subset, 
face-forall-implies, 
context-subset-swap, 
composition-structure-subset, 
interval-1_wf, 
cube_set_map_subtype3, 
face-forall-implies-1, 
unglue-term_wf2, 
context-iterated-subset1, 
glue-type-subset, 
csm-comp-structure_wf, 
cube_set_map_cumulativity-i-j, 
subtype_rel_wf, 
glue-type-term-subtype, 
glue-type-term-subtype2, 
cubical-app_wf_fun, 
cubical_set_wf, 
cube_set_map_wf, 
csm-context-subset-subtype3, 
constrained-cubical-term_wf, 
cubical-type-cumulativity2, 
csm-id-adjoin_wf-interval-1, 
istype-cubical-term, 
uniform-comp-function_wf, 
cubical-equiv_wf, 
composition-structure_wf, 
csm-comp_term, 
composition-structure-cumulativity, 
context-adjoin-subset4, 
comp_term_wf, 
csm-comp-structure-composition-function, 
unglue-term_wf, 
cubical-fun-subset, 
cubical-term_wf, 
partial-term-0_wf, 
csm+_wf_interval, 
csm-constrained-cubical-term, 
partial-term-1_wf, 
glue-type-constraint, 
face-forall-implies-0, 
csm-comp_wf, 
subtype_rel_transitivity, 
composition-function-subset, 
face-and_wf, 
cube_set_map_subtype, 
csm-face-and, 
csm_id_adjoin_fst_term_lemma, 
csm-ap-id-term, 
context-iterated-subset, 
sub_cubical_set_wf, 
csm-face-term-implies, 
face-term-and-implies2, 
csm-comp-term, 
face-forall-implies-csm+, 
composition-function_wf, 
csm-face-forall, 
csm-ap-comp-term-sq2, 
composition-function-cumulativity, 
csm-ap-term-subset-subset, 
csm-comp-structure_wf2, 
cube_set_map_subtype2, 
constrained-cubical-term-eqcd, 
pres-c1_wf, 
csm-pres-c1, 
pres-c2_wf, 
csm-pres-c2, 
context-iterated-subset0, 
cubical-fun-subset-adjoin, 
context-adjoin-subset0, 
term-to-path-is-refl, 
path-type_wf, 
pres_wf2, 
csm-pres, 
csm+-ap-term-wf, 
term-to-path-subset, 
path-type-subset, 
subset-constrained-cubical-term, 
pres-invariant, 
csm-equiv-fun, 
face-or_wf, 
case-term_wf2, 
csm-case-term, 
I_cube_pair_redex_lemma, 
csm-face-or, 
face-or-eq-1, 
cubical-term-at_wf, 
I_cube_wf, 
fset_wf, 
nat_wf, 
lattice-point_wf, 
face_lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
lattice-meet_wf, 
lattice-join_wf, 
fl-eq_wf, 
lattice-1_wf, 
eqtt_to_assert, 
assert-fl-eq, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
cubical-term-equal, 
subset-I_cube, 
subtype-respects-equality, 
cubical-type-at_wf, 
face-term-or-implies, 
face-term-and-implies1, 
face-term-implies_wf, 
face-term-implies-and, 
face-term-implies-or, 
face-term-implies-or1, 
csm-cubical-app, 
csm-cubical-equiv, 
face-term-implies-or2, 
case-term-equal-right, 
bdd-distributive-lattice-subtype-bdd-lattice, 
lattice-meet-eq-1, 
face_lattice-1-join-irreducible, 
iff_transitivity, 
comp_term-subset, 
case-term-equal-left, 
context-subset-subtype-or2, 
csm-path-type-sub-pathtype, 
pathtype_wf, 
pathtype-subset, 
path-type-sub-pathtype, 
csm-pathtype, 
csm-id-adjoin-subset, 
csm-term-to-path, 
csm-paths-equal, 
fiber-comp_wf, 
cubical-fiber_wf, 
csm-fiber-comp, 
equiv-term_wf, 
csm-equiv-term, 
fiber-point_wf, 
cubical-fiber-subset, 
csm-fiber-point, 
csm-cubical-fiber, 
csm-path-type, 
fiber-member_wf, 
fiber-path_wf, 
csm-fiber-member, 
csm-fiber-path, 
cubical-path-app_wf, 
cc-snd_wf, 
fiber-member-fiber-point, 
context-subset-subtype-or, 
term-to-path-app-snd, 
partial-term-1-subset, 
csm_id_ap_term_lemma, 
context-adjoin-subset3, 
csm_id_adjoin_fst_type_lemma, 
cubical-path-ap-id-adjoin2, 
cubical-path-app-0, 
case-term-same2, 
csm-id_wf, 
istype-cubical-type-at, 
face-type-at, 
cubical-path-app-sq, 
cubicalpath-app_wf, 
csm-cubical-path-app, 
path-eta_wf, 
cubical-path-app-1, 
csm-glue-term, 
glue-term_wf, 
respects-equality-context-subset-term
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
dependent_set_memberEquality_alt, 
equalityTransitivity, 
equalitySymmetry, 
rename, 
sqequalRule, 
isectElimination, 
Error :memTop, 
independent_pairFormation, 
applyEquality, 
instantiate, 
lambdaEquality_alt, 
imageElimination, 
universeIsType, 
universeEquality, 
because_Cache, 
independent_isectElimination, 
inhabitedIsType, 
hyp_replacement, 
equalityIstype, 
independent_functionElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
applyLambdaEquality, 
setElimination, 
productIsType, 
functionEquality, 
cumulativity, 
functionExtensionality, 
productEquality, 
isectEquality, 
unionElimination, 
equalityElimination, 
dependent_pairFormation_alt, 
promote_hyp, 
voidElimination, 
inrFormation_alt, 
unionEquality, 
unionIsType, 
inlFormation_alt, 
setEquality, 
dependent_pairEquality_alt
Latex:
\mforall{}G:j\mvdash{}.  \mforall{}A:\{G  \mvdash{}  \_\}.  \mforall{}cA:G  +\mvdash{}  Compositon(A).  \mforall{}psi:\{G  \mvdash{}  \_:\mBbbF{}\}.  \mforall{}T:\{G,  psi  \mvdash{}  \_\}.
\mforall{}cT:G,  psi  +\mvdash{}  Compositon(T).  \mforall{}f:\{G,  psi  \mvdash{}  \_:Equiv(T;A)\}.
    (comp(Glue  [psi  \mvdash{}\mrightarrow{}  (T,  f)]  A)    \mmember{}  G  \mvdash{}  Compositon(Glue  [psi  \mvdash{}\mrightarrow{}  (T;equiv-fun(f))]  A))
Date html generated:
2020_05_20-PM-07_00_36
Last ObjectModification:
2020_04_24-PM-10_06_18
Theory : cubical!type!theory
Home
Index