Nuprl Lemma : glue-comp_wf2

G:j⊢. ∀A:{G ⊢ _}. ∀cA:G +⊢ Compositon(A). ∀psi:{G ⊢ _:𝔽}. ∀T:{G, psi ⊢ _}. ∀cT:G, psi +⊢ Compositon(T).
f:{G, psi ⊢ _:Equiv(T;A)}.
  (comp(Glue [psi ⊢→ (T, f)] A)  ∈ G ⊢ Compositon(Glue [psi ⊢→ (T;equiv-fun(f))] A))


Proof




Definitions occuring in Statement :  glue-comp: comp(Glue [phi ⊢→ (T, f)] A)  glue-type: Glue [phi ⊢→ (T;w)] A composition-structure: Gamma ⊢ Compositon(A) equiv-fun: equiv-fun(f) cubical-equiv: Equiv(T;A) context-subset: Gamma, phi face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet all: x:A. B[x] member: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T composition-structure: Gamma ⊢ Compositon(A) uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp) constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} glue-comp: comp(Glue [phi ⊢→ (T, f)] A)  uall: [x:A]. B[x] interval-type: 𝕀 csm+: tau+ csm-ap-term: (t)s csm-comp: F cc-snd: q cc-fst: p constant-cubical-type: (X) csm-ap-type: (AF)s csm-adjoin: (s;u) csm-ap: (s)x compose: g interval-0: 0(𝕀) csm-id-adjoin: [u] csm-id: 1(X) pi2: snd(t) pi1: fst(t) and: P ∧ Q cand: c∧ B squash: T prop: uimplies: supposing a implies:  Q true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q csm-comp-structure: (cA)tau composition-function: composition-function{j:l,i:l}(Gamma;A) let: let partial-term-0: u[0] partial-term-1: u[1] interval-1: 1(𝕀) cubical-type: {X ⊢ _} glue-type: Glue [phi ⊢→ (T;w)] A same-cubical-type: Gamma ⊢ B case-term: (u ∨ v) context-subset: Gamma, phi cubical-type-at: A(a) face-type: 𝔽 I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] so_apply: x[s] bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False not: ¬A respects-equality: respects-equality(S;T) same-cubical-term: X ⊢ u=v:A face-term-implies: Gamma ⊢ (phi  psi) face-or: (a ∨ b) face-and: (a ∧ b) cubical-term-at: u(a) pres-c1: pres-c1(G;phi;f;t;t0;cA) pres-c2: pres-c2(G;phi;f;t;t0;cT) fiber-point: fiber-point(t;c) fiber-path: fiber-path(p) cubical-pair: cubical-pair(u;v) cubical-snd: p.2 cube-context-adjoin: X.A cubical-path-app: pth r path-eta: path-eta(pth)
Lemmas referenced :  glue-comp_wf csm-unglue glue-type_wf equiv-fun_wf context-subset_wf thin-context-subset equal_wf squash_wf true_wf istype-universe cubical-type_wf cube-context-adjoin_wf interval-type_wf csm-glue-type csm-ap-type_wf csm-ap-term_wf face-type_wf csm-face-type context-subset-map csm-cubical-fun cubical-term-eqcd cubical-fun_wf subtype_rel_self iff_weakening_equal subset-cubical-term2 cc-fst_wf_interval context-adjoin-subset1 thin-context-subset-adjoin subset-cubical-type sub_cubical_set_functionality context-subset-is-subset equal_functionality_wrt_subtype_rel2 context-subset-term-subtype sub_cubical_set_functionality2 csm-id-adjoin_wf interval-0_wf cubical_set_cumulativity-i-j csm-id-adjoin_wf-interval-0 sub_cubical_set_self sub_cubical_set_transitivity face-forall_wf subset-cubical-term context-adjoin-subset2 csm-context-subset-subtype2 face-term-implies-subset face-forall-implies context-subset-swap composition-structure-subset interval-1_wf cube_set_map_subtype3 face-forall-implies-1 unglue-term_wf2 context-iterated-subset1 glue-type-subset csm-comp-structure_wf cube_set_map_cumulativity-i-j subtype_rel_wf glue-type-term-subtype glue-type-term-subtype2 cubical-app_wf_fun cubical_set_wf cube_set_map_wf csm-context-subset-subtype3 constrained-cubical-term_wf cubical-type-cumulativity2 csm-id-adjoin_wf-interval-1 istype-cubical-term uniform-comp-function_wf cubical-equiv_wf composition-structure_wf csm-comp_term composition-structure-cumulativity context-adjoin-subset4 comp_term_wf csm-comp-structure-composition-function unglue-term_wf cubical-fun-subset cubical-term_wf partial-term-0_wf csm+_wf_interval csm-constrained-cubical-term partial-term-1_wf glue-type-constraint face-forall-implies-0 csm-comp_wf subtype_rel_transitivity composition-function-subset face-and_wf cube_set_map_subtype csm-face-and csm_id_adjoin_fst_term_lemma csm-ap-id-term context-iterated-subset sub_cubical_set_wf csm-face-term-implies face-term-and-implies2 csm-comp-term face-forall-implies-csm+ composition-function_wf csm-face-forall csm-ap-comp-term-sq2 composition-function-cumulativity csm-ap-term-subset-subset csm-comp-structure_wf2 cube_set_map_subtype2 constrained-cubical-term-eqcd pres-c1_wf csm-pres-c1 pres-c2_wf csm-pres-c2 context-iterated-subset0 cubical-fun-subset-adjoin context-adjoin-subset0 term-to-path-is-refl path-type_wf pres_wf2 csm-pres csm+-ap-term-wf term-to-path-subset path-type-subset subset-constrained-cubical-term pres-invariant csm-equiv-fun face-or_wf case-term_wf2 csm-case-term I_cube_pair_redex_lemma csm-face-or face-or-eq-1 cubical-term-at_wf I_cube_wf fset_wf nat_wf lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf fl-eq_wf lattice-1_wf eqtt_to_assert assert-fl-eq eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf cubical-term-equal subset-I_cube subtype-respects-equality cubical-type-at_wf face-term-or-implies face-term-and-implies1 face-term-implies_wf face-term-implies-and face-term-implies-or face-term-implies-or1 csm-cubical-app csm-cubical-equiv face-term-implies-or2 case-term-equal-right bdd-distributive-lattice-subtype-bdd-lattice lattice-meet-eq-1 face_lattice-1-join-irreducible iff_transitivity comp_term-subset case-term-equal-left context-subset-subtype-or2 csm-path-type-sub-pathtype pathtype_wf pathtype-subset path-type-sub-pathtype csm-pathtype csm-id-adjoin-subset csm-term-to-path csm-paths-equal fiber-comp_wf cubical-fiber_wf csm-fiber-comp equiv-term_wf csm-equiv-term fiber-point_wf cubical-fiber-subset csm-fiber-point csm-cubical-fiber csm-path-type fiber-member_wf fiber-path_wf csm-fiber-member csm-fiber-path cubical-path-app_wf cc-snd_wf fiber-member-fiber-point context-subset-subtype-or term-to-path-app-snd partial-term-1-subset csm_id_ap_term_lemma context-adjoin-subset3 csm_id_adjoin_fst_type_lemma cubical-path-ap-id-adjoin2 cubical-path-app-0 case-term-same2 csm-id_wf istype-cubical-type-at face-type-at cubical-path-app-sq cubicalpath-app_wf csm-cubical-path-app path-eta_wf cubical-path-app-1 csm-glue-term glue-term_wf respects-equality-context-subset-term
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality dependent_set_memberEquality_alt equalityTransitivity equalitySymmetry rename sqequalRule isectElimination Error :memTop,  independent_pairFormation applyEquality instantiate lambdaEquality_alt imageElimination universeIsType universeEquality because_Cache independent_isectElimination inhabitedIsType hyp_replacement equalityIstype independent_functionElimination natural_numberEquality imageMemberEquality baseClosed productElimination applyLambdaEquality setElimination productIsType functionEquality cumulativity functionExtensionality productEquality isectEquality unionElimination equalityElimination dependent_pairFormation_alt promote_hyp voidElimination inrFormation_alt unionEquality unionIsType inlFormation_alt setEquality dependent_pairEquality_alt

Latex:
\mforall{}G:j\mvdash{}.  \mforall{}A:\{G  \mvdash{}  \_\}.  \mforall{}cA:G  +\mvdash{}  Compositon(A).  \mforall{}psi:\{G  \mvdash{}  \_:\mBbbF{}\}.  \mforall{}T:\{G,  psi  \mvdash{}  \_\}.
\mforall{}cT:G,  psi  +\mvdash{}  Compositon(T).  \mforall{}f:\{G,  psi  \mvdash{}  \_:Equiv(T;A)\}.
    (comp(Glue  [psi  \mvdash{}\mrightarrow{}  (T,  f)]  A)    \mmember{}  G  \mvdash{}  Compositon(Glue  [psi  \mvdash{}\mrightarrow{}  (T;equiv-fun(f))]  A))



Date html generated: 2020_05_20-PM-07_00_36
Last ObjectModification: 2020_04_24-PM-10_06_18

Theory : cubical!type!theory


Home Index