Nuprl Lemma : csm-pres

[G:j⊢]. ∀[phi:{G ⊢ _:𝔽}]. ∀[A,T:{G.𝕀 ⊢ _}]. ∀[f:{G.𝕀 ⊢ _:(T ⟶ A)}]. ∀[t:{G.𝕀(phi)p ⊢ _:T}].
[t0:{G ⊢ _:(T)[0(𝕀)][phi |⟶ t[0]]}]. ∀[cT:G.𝕀 +⊢ Compositon(T)]. ∀[cA:G.𝕀 +⊢ Compositon(A)]. ∀[H:j⊢]. ∀[s:H j⟶ G].
  ((pres [phi ⊢→ t] t0)s
  pres (f)s+ [(phi)s ⊢→ (t)s+] (t0)s
  ∈ {H ⊢ _:(Path_((A)s+)[1(𝕀)] pres-c1(H;(phi)s;(f)s+;(t)s+;(t0)s;(cA)s+) pres-c2(H;(phi)s;(f)s+;(t)s+;(t0)s;(cT)s+))})


Proof




Definitions occuring in Statement :  pres: pres [phi ⊢→ t] t0 pres-c2: pres-c2(G;phi;f;t;t0;cT) pres-c1: pres-c1(G;phi;f;t;t0;cA) csm-comp-structure: (cA)tau composition-structure: Gamma ⊢ Compositon(A) path-type: (Path_A b) partial-term-0: u[0] constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-type: 𝔽 interval-1: 1(𝕀) interval-0: 0(𝕀) interval-type: 𝕀 cubical-fun: (A ⟶ B) csm+: tau+ csm-id-adjoin: [u] cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a pres: pres [phi ⊢→ t] t0 guard: {T} cc-snd: q interval-type: 𝕀 cc-fst: p csm-ap-type: (AF)s constant-cubical-type: (X) composition-structure: Gamma ⊢ Compositon(A) all: x:A. B[x] composition-function: composition-function{j:l,i:l}(Gamma;A) uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp) csm+: tau+ csm-comp: F csm-comp-structure: (cA)tau csm-adjoin: (s;u) compose: g csm-ap: (s)x cubical-type: {X ⊢ _} interval-1: 1(𝕀) csm-id-adjoin: [u] csm-id: 1(X) pi2: snd(t) pi1: fst(t) implies:  Q constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} squash: T prop: true: True csm-ap-term: (t)s cubical-term-at: u(a) face-or: (a ∨ b) face-one: (i=1) same-cubical-type: Gamma ⊢ B comp_trm: comp_trm pres-a0: pres-a0(G;f;t0) interval-0: 0(𝕀) cubical-app: app(w; u) rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q partial-term-0: u[0] same-cubical-term: X ⊢ u=v:A face-1: 1(𝔽) btrue: tt bfalse: ff eq_atom: =a y ifthenelse: if then else fi  record-update: r[x := v] mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) face-lattice: face-lattice(T;eq) face_lattice: face_lattice(I) record-select: r.x lattice-point: Point(l) face-presheaf: 𝔽 functor-ob: ob(F) I_cube: A(I) face-type: 𝔽 cubical-type-at: A(a) so_apply: x[s] so_lambda: λ2x.t[x] bdd-distributive-lattice: BoundedDistributiveLattice
Lemmas referenced :  csm+_wf interval-type_wf csm-interval-type cube_set_map_wf composition-structure_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j csm-ap-type_wf csm-id-adjoin_wf interval-0_wf partial-term-0_wf constrained-cubical-term-eqcd istype-cubical-term context-subset_wf csm-ap-term_wf face-type_wf csm-face-type cc-fst_wf_interval thin-context-subset cubical-fun_wf cubical-type_wf cubical_set_wf context-subset-term-subtype cubical-app_wf_fun cubical-fun-subset subset-cubical-term face-or_wf face-one_wf cc-snd_wf sub_cubical_set-cumulativity1 sub_cubical_set_functionality context-subset-is-subset interval-1_wf presw_wf composition-function-cumulativity pres-a0-constraint cubical-type-cumulativity2 subtype_rel_self comp_term_wf csm-comp-structure-composition-function csm+_wf_interval composition-structure-cumulativity csm-term-to-path term-to-path_wf squash_wf true_wf csm-comp_term csm-comp-structure_wf context-adjoin-subset0 subset-cubical-type cubical-term_wf cubical-term-eqcd subtype_rel-equal csm-id-adjoin_wf-interval-1 csm-context-subset-subtype2 face-term-implies-same csm-ap-term-wf-subset comp_trm_wf composition-function_wf csm-id-adjoin_wf-interval-0 cube_set_map_cumulativity-i-j csm-presw csm-cubical-fun sub_cubical_set_self subset-cubical-term2 csm-constrained-cubical-term iff_weakening_equal csm-ap-id-term face-term-implies_wf csm_id_adjoin_fst_term_lemma path-type_wf presw-pres-c1 same-cubical-term_wf cubical-term-equal nat_wf fset_wf I_cube_wf csm-face-or face-or-at cubical-term-at_wf thin-context-subset-adjoin constrained-cubical-term_wf context-adjoin-subset1 sub_cubical_set_transitivity csm-cubical-app cubical-type-cumulativity pres-c1_wf partial-term-1_wf face-1_wf face-type-at bdd-distributive-lattice-subtype-bdd-lattice lattice-1-join lattice-1_wf lattice-join_wf lattice-meet_wf equal_wf bounded-lattice-axioms_wf bounded-lattice-structure-subtype lattice-axioms_wf lattice-structure_wf bounded-lattice-structure_wf subtype_rel_set face_lattice_wf lattice-point_wf istype-universe dM-to-FL-dM1 context-1-subset presw-pres-c2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality hypothesis sqequalRule Error :memTop,  universeIsType inhabitedIsType instantiate applyEquality equalityTransitivity equalitySymmetry independent_isectElimination setElimination rename dependent_functionElimination lambdaEquality_alt cumulativity universeEquality productElimination lambdaFormation_alt equalityIstype independent_functionElimination imageElimination natural_numberEquality imageMemberEquality baseClosed applyLambdaEquality functionExtensionality hyp_replacement independent_pairFormation dependent_set_memberEquality_alt isectEquality productEquality

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[phi:\{G  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A,T:\{G.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[f:\{G.\mBbbI{}  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].  \mforall{}[t:\{G.\mBbbI{},  (phi)p  \mvdash{}  \_:T\}].
\mforall{}[t0:\{G  \mvdash{}  \_:(T)[0(\mBbbI{})][phi  |{}\mrightarrow{}  t[0]]\}].  \mforall{}[cT:G.\mBbbI{}  +\mvdash{}  Compositon(T)].  \mforall{}[cA:G.\mBbbI{}  +\mvdash{}  Compositon(A)].
\mforall{}[H:j\mvdash{}].  \mforall{}[s:H  j{}\mrightarrow{}  G].
    ((pres  f  [phi  \mvdash{}\mrightarrow{}  t]  t0)s  =  pres  (f)s+  [(phi)s  \mvdash{}\mrightarrow{}  (t)s+]  (t0)s)



Date html generated: 2020_05_20-PM-05_32_26
Last ObjectModification: 2020_05_02-PM-10_06_45

Theory : cubical!type!theory


Home Index