Nuprl Lemma : csm-pres
∀[G:j⊢]. ∀[phi:{G ⊢ _:𝔽}]. ∀[A,T:{G.𝕀 ⊢ _}]. ∀[f:{G.𝕀 ⊢ _:(T ⟶ A)}]. ∀[t:{G.𝕀, (phi)p ⊢ _:T}].
∀[t0:{G ⊢ _:(T)[0(𝕀)][phi |⟶ t[0]]}]. ∀[cT:G.𝕀 +⊢ Compositon(T)]. ∀[cA:G.𝕀 +⊢ Compositon(A)]. ∀[H:j⊢]. ∀[s:H j⟶ G].
  ((pres f [phi ⊢→ t] t0)s
  = pres (f)s+ [(phi)s ⊢→ (t)s+] (t0)s
  ∈ {H ⊢ _:(Path_((A)s+)[1(𝕀)] pres-c1(H;(phi)s;(f)s+;(t)s+;(t0)s;(cA)s+) pres-c2(H;(phi)s;(f)s+;(t)s+;(t0)s;(cT)s+))})
Proof
Definitions occuring in Statement : 
pres: pres f [phi ⊢→ t] t0
, 
pres-c2: pres-c2(G;phi;f;t;t0;cT)
, 
pres-c1: pres-c1(G;phi;f;t;t0;cA)
, 
csm-comp-structure: (cA)tau
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
path-type: (Path_A a b)
, 
partial-term-0: u[0]
, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
, 
context-subset: Gamma, phi
, 
face-type: 𝔽
, 
interval-1: 1(𝕀)
, 
interval-0: 0(𝕀)
, 
interval-type: 𝕀
, 
cubical-fun: (A ⟶ B)
, 
csm+: tau+
, 
csm-id-adjoin: [u]
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
pres: pres f [phi ⊢→ t] t0
, 
guard: {T}
, 
cc-snd: q
, 
interval-type: 𝕀
, 
cc-fst: p
, 
csm-ap-type: (AF)s
, 
constant-cubical-type: (X)
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
all: ∀x:A. B[x]
, 
composition-function: composition-function{j:l,i:l}(Gamma;A)
, 
uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp)
, 
csm+: tau+
, 
csm-comp: G o F
, 
csm-comp-structure: (cA)tau
, 
csm-adjoin: (s;u)
, 
compose: f o g
, 
csm-ap: (s)x
, 
cubical-type: {X ⊢ _}
, 
interval-1: 1(𝕀)
, 
csm-id-adjoin: [u]
, 
csm-id: 1(X)
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
implies: P 
⇒ Q
, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
csm-ap-term: (t)s
, 
cubical-term-at: u(a)
, 
face-or: (a ∨ b)
, 
face-one: (i=1)
, 
same-cubical-type: Gamma ⊢ A = B
, 
comp_trm: comp_trm, 
pres-a0: pres-a0(G;f;t0)
, 
interval-0: 0(𝕀)
, 
cubical-app: app(w; u)
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
partial-term-0: u[0]
, 
same-cubical-term: X ⊢ u=v:A
, 
face-1: 1(𝔽)
, 
btrue: tt
, 
bfalse: ff
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
record-update: r[x := v]
, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
face-lattice: face-lattice(T;eq)
, 
face_lattice: face_lattice(I)
, 
record-select: r.x
, 
lattice-point: Point(l)
, 
face-presheaf: 𝔽
, 
functor-ob: ob(F)
, 
I_cube: A(I)
, 
face-type: 𝔽
, 
cubical-type-at: A(a)
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
bdd-distributive-lattice: BoundedDistributiveLattice
Lemmas referenced : 
csm+_wf, 
interval-type_wf, 
csm-interval-type, 
cube_set_map_wf, 
composition-structure_wf, 
cube-context-adjoin_wf, 
cubical_set_cumulativity-i-j, 
csm-ap-type_wf, 
csm-id-adjoin_wf, 
interval-0_wf, 
partial-term-0_wf, 
constrained-cubical-term-eqcd, 
istype-cubical-term, 
context-subset_wf, 
csm-ap-term_wf, 
face-type_wf, 
csm-face-type, 
cc-fst_wf_interval, 
thin-context-subset, 
cubical-fun_wf, 
cubical-type_wf, 
cubical_set_wf, 
context-subset-term-subtype, 
cubical-app_wf_fun, 
cubical-fun-subset, 
subset-cubical-term, 
face-or_wf, 
face-one_wf, 
cc-snd_wf, 
sub_cubical_set-cumulativity1, 
sub_cubical_set_functionality, 
context-subset-is-subset, 
interval-1_wf, 
presw_wf, 
composition-function-cumulativity, 
pres-a0-constraint, 
cubical-type-cumulativity2, 
subtype_rel_self, 
comp_term_wf, 
csm-comp-structure-composition-function, 
csm+_wf_interval, 
composition-structure-cumulativity, 
csm-term-to-path, 
term-to-path_wf, 
squash_wf, 
true_wf, 
csm-comp_term, 
csm-comp-structure_wf, 
context-adjoin-subset0, 
subset-cubical-type, 
cubical-term_wf, 
cubical-term-eqcd, 
subtype_rel-equal, 
csm-id-adjoin_wf-interval-1, 
csm-context-subset-subtype2, 
face-term-implies-same, 
csm-ap-term-wf-subset, 
comp_trm_wf, 
composition-function_wf, 
csm-id-adjoin_wf-interval-0, 
cube_set_map_cumulativity-i-j, 
csm-presw, 
csm-cubical-fun, 
sub_cubical_set_self, 
subset-cubical-term2, 
csm-constrained-cubical-term, 
iff_weakening_equal, 
csm-ap-id-term, 
face-term-implies_wf, 
csm_id_adjoin_fst_term_lemma, 
path-type_wf, 
presw-pres-c1, 
same-cubical-term_wf, 
cubical-term-equal, 
nat_wf, 
fset_wf, 
I_cube_wf, 
csm-face-or, 
face-or-at, 
cubical-term-at_wf, 
thin-context-subset-adjoin, 
constrained-cubical-term_wf, 
context-adjoin-subset1, 
sub_cubical_set_transitivity, 
csm-cubical-app, 
cubical-type-cumulativity, 
pres-c1_wf, 
partial-term-1_wf, 
face-1_wf, 
face-type-at, 
bdd-distributive-lattice-subtype-bdd-lattice, 
lattice-1-join, 
lattice-1_wf, 
lattice-join_wf, 
lattice-meet_wf, 
equal_wf, 
bounded-lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
lattice-axioms_wf, 
lattice-structure_wf, 
bounded-lattice-structure_wf, 
subtype_rel_set, 
face_lattice_wf, 
lattice-point_wf, 
istype-universe, 
dM-to-FL-dM1, 
context-1-subset, 
presw-pres-c2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
Error :memTop, 
universeIsType, 
inhabitedIsType, 
instantiate, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
setElimination, 
rename, 
dependent_functionElimination, 
lambdaEquality_alt, 
cumulativity, 
universeEquality, 
productElimination, 
lambdaFormation_alt, 
equalityIstype, 
independent_functionElimination, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
applyLambdaEquality, 
functionExtensionality, 
hyp_replacement, 
independent_pairFormation, 
dependent_set_memberEquality_alt, 
isectEquality, 
productEquality
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[phi:\{G  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A,T:\{G.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[f:\{G.\mBbbI{}  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].  \mforall{}[t:\{G.\mBbbI{},  (phi)p  \mvdash{}  \_:T\}].
\mforall{}[t0:\{G  \mvdash{}  \_:(T)[0(\mBbbI{})][phi  |{}\mrightarrow{}  t[0]]\}].  \mforall{}[cT:G.\mBbbI{}  +\mvdash{}  Compositon(T)].  \mforall{}[cA:G.\mBbbI{}  +\mvdash{}  Compositon(A)].
\mforall{}[H:j\mvdash{}].  \mforall{}[s:H  j{}\mrightarrow{}  G].
    ((pres  f  [phi  \mvdash{}\mrightarrow{}  t]  t0)s  =  pres  (f)s+  [(phi)s  \mvdash{}\mrightarrow{}  (t)s+]  (t0)s)
Date html generated:
2020_05_20-PM-05_32_26
Last ObjectModification:
2020_05_02-PM-10_06_45
Theory : cubical!type!theory
Home
Index