Nuprl Lemma : pres-c1_wf

[G:j⊢]. ∀[phi:{G ⊢ _:𝔽}]. ∀[A,T:{G.𝕀 ⊢ _}]. ∀[f:{G.𝕀 ⊢ _:(T ⟶ A)}]. ∀[t:{G.𝕀(phi)p ⊢ _:T}].
[t0:{G ⊢ _:(T)[0(𝕀)][phi |⟶ t[0]]}]. ∀[cA:composition-function{j:l,i:l}(G.𝕀;A)].
  (pres-c1(G;phi;f;t;t0;cA) ∈ {G ⊢ _:(A)[1(𝕀)][phi |⟶ app(f; t)[1]]})


Proof




Definitions occuring in Statement :  pres-c1: pres-c1(G;phi;f;t;t0;cA) composition-function: composition-function{j:l,i:l}(Gamma;A) partial-term-1: u[1] partial-term-0: u[0] constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-type: 𝔽 interval-1: 1(𝕀) interval-0: 0(𝕀) interval-type: 𝕀 cubical-app: app(w; u) cubical-fun: (A ⟶ B) csm-id-adjoin: [u] cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T pres-c1: pres-c1(G;phi;f;t;t0;cA) subtype_rel: A ⊆B partial-term-1: u[1] partial-term-0: u[0] guard: {T} uimplies: supposing a all: x:A. B[x] implies:  Q constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} csm-id-adjoin: [u] csm-id: 1(X) squash: T prop: true: True
Lemmas referenced :  context-subset-term-subtype cube-context-adjoin_wf interval-type_wf cubical-fun_wf csm-ap-term_wf face-type_wf csm-face-type cc-fst_wf_interval cubical-app_wf_fun context-subset_wf thin-context-subset cubical-fun-subset comp_term_wf composition-function_wf constrained-cubical-term_wf csm-ap-type_wf csm-id-adjoin_wf-interval-0 cubical-type-cumulativity2 cubical_set_cumulativity-i-j partial-term-0_wf istype-cubical-term cubical-type_wf cubical_set_wf subset-cubical-term context-adjoin-subset4 csm-cubical-fun csm-id-adjoin_wf interval-0_wf cubical-term-eqcd csm-cubical-app context-subset-is-subset squash_wf true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut hypothesisEquality applyEquality thin introduction extract_by_obid sqequalHypSubstitution isectElimination instantiate hypothesis sqequalRule Error :memTop,  because_Cache equalityTransitivity equalitySymmetry universeIsType independent_isectElimination dependent_functionElimination independent_functionElimination setElimination rename lambdaEquality_alt cumulativity universeEquality hyp_replacement dependent_set_memberEquality_alt imageElimination inhabitedIsType natural_numberEquality imageMemberEquality baseClosed equalityIstype

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[phi:\{G  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A,T:\{G.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[f:\{G.\mBbbI{}  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].  \mforall{}[t:\{G.\mBbbI{},  (phi)p  \mvdash{}  \_:T\}].
\mforall{}[t0:\{G  \mvdash{}  \_:(T)[0(\mBbbI{})][phi  |{}\mrightarrow{}  t[0]]\}].  \mforall{}[cA:composition-function\{j:l,i:l\}(G.\mBbbI{};A)].
    (pres-c1(G;phi;f;t;t0;cA)  \mmember{}  \{G  \mvdash{}  \_:(A)[1(\mBbbI{})][phi  |{}\mrightarrow{}  app(f;  t)[1]]\})



Date html generated: 2020_05_20-PM-05_25_34
Last ObjectModification: 2020_04_18-PM-10_56_42

Theory : cubical!type!theory


Home Index