Nuprl Lemma : context-adjoin-subset0
∀[H:j⊢]. ∀[phi:{H ⊢ _:𝔽}].  ∀T:{H ⊢ _}. sub_cubical_set{k:l}(H.T, (phi)p; H, phi.T)
Proof
Definitions occuring in Statement : 
context-subset: Gamma, phi
, 
face-type: 𝔽
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
sub_cubical_set: Y ⊆ X
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
sub_cubical_set: Y ⊆ X
, 
member: t ∈ T
, 
cubical-term: {X ⊢ _:A}
, 
cc-fst: p
, 
csm-ap-term: (t)s
, 
cubical-term-at: u(a)
, 
csm-ap: (s)x
, 
subtype_rel: A ⊆r B
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
cubical-type-at: A(a)
, 
pi1: fst(t)
, 
face-type: 𝔽
, 
constant-cubical-type: (X)
, 
I_cube: A(I)
, 
functor-ob: ob(F)
, 
face-presheaf: 𝔽
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
face_lattice: face_lattice(I)
, 
face-lattice: face-lattice(T;eq)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
cube_set_map: A ⟶ B
, 
psc_map: A ⟶ B
, 
nat-trans: nat-trans(C;D;F;G)
, 
csm-id: 1(X)
, 
cat-arrow: cat-arrow(C)
, 
op-cat: op-cat(C)
, 
cat-ob: cat-ob(C)
, 
cube-cat: CubeCat
, 
spreadn: spread4, 
cube-context-adjoin: X.A
, 
type-cat: TypeCat
, 
pi2: snd(t)
, 
context-subset: Gamma, phi
, 
functor-arrow: arrow(F)
, 
cat-comp: cat-comp(C)
, 
compose: f o g
, 
guard: {T}
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
lattice-point_wf, 
face_lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
pi1_wf_top, 
I_cube_wf, 
istype-cubical-type-at, 
fset_wf, 
nat_wf, 
I_cube_pair_redex_lemma, 
cube_set_restriction_pair_lemma, 
cubical-type_wf, 
cubical-term_wf, 
face-type_wf, 
cubical_set_wf, 
cubical-term-at_wf, 
subtype_rel_self, 
cubical-type-at_wf, 
lattice-1_wf, 
squash_wf, 
true_wf, 
istype-universe, 
face-term-at-restriction-eq-1, 
iff_weakening_equal, 
cube-set-restriction_wf, 
cubical-type-ap-morph_wf, 
names-hom_wf, 
pi2_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
sqequalRule, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
instantiate, 
lambdaEquality_alt, 
productEquality, 
cumulativity, 
isectEquality, 
because_Cache, 
universeIsType, 
independent_isectElimination, 
productElimination, 
independent_pairEquality, 
Error :memTop, 
equalityTransitivity, 
equalitySymmetry, 
hyp_replacement, 
productIsType, 
dependent_set_memberEquality_alt, 
dependent_functionElimination, 
dependent_pairEquality_alt, 
equalityIstype, 
inhabitedIsType, 
setIsType, 
functionExtensionality, 
imageElimination, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
setEquality, 
functionIsType
Latex:
\mforall{}[H:j\mvdash{}].  \mforall{}[phi:\{H  \mvdash{}  \_:\mBbbF{}\}].    \mforall{}T:\{H  \mvdash{}  \_\}.  sub\_cubical\_set\{k:l\}(H.T,  (phi)p;  H,  phi.T)
Date html generated:
2020_05_20-PM-03_04_43
Last ObjectModification:
2020_04_13-PM-05_43_31
Theory : cubical!type!theory
Home
Index