Nuprl Lemma : presw-pres-c1
∀[G:j⊢]. ∀[phi:{G ⊢ _:𝔽}]. ∀[A,T:{G.𝕀 ⊢ _}]. ∀[f:{G.𝕀 ⊢ _:(T ⟶ A)}]. ∀[t:{G.𝕀, (phi)p ⊢ _:T}].
∀[t0:{G ⊢ _:(T)[0(𝕀)][phi |⟶ t[0]]}]. ∀[cT:G.𝕀 +⊢ Compositon(T)]. ∀[cA:G.𝕀 ⊢ Compositon(A)].
  G ⊢ (comp (cA)p+ [((phi)p ∨ (q=1)) ⊢→ (presw(G;phi;f;t;t0;cT))p+] (pres-a0(G;f;t0))p)[0(𝕀)]=pres-c1(G;phi;f;t;t0;cA):
  (A)[1(𝕀)]
Proof
Definitions occuring in Statement : 
presw: presw(G;phi;f;t;t0;cT), 
pres-c1: pres-c1(G;phi;f;t;t0;cA), 
pres-a0: pres-a0(G;f;t0), 
comp_term: comp cA [phi ⊢→ u] a0, 
csm-comp-structure: (cA)tau, 
composition-structure: Gamma ⊢ Compositon(A), 
partial-term-0: u[0], 
same-cubical-term: X ⊢ u=v:A, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}, 
context-subset: Gamma, phi, 
face-one: (i=1), 
face-or: (a ∨ b), 
face-type: 𝔽, 
interval-1: 1(𝕀), 
interval-0: 0(𝕀), 
interval-type: 𝕀, 
cubical-fun: (A ⟶ B), 
csm+: tau+, 
csm-id-adjoin: [u], 
cc-snd: q, 
cc-fst: p, 
cube-context-adjoin: X.A, 
csm-ap-term: (t)s, 
cubical-term: {X ⊢ _:A}, 
csm-ap-type: (AF)s, 
cubical-type: {X ⊢ _}, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
same-cubical-term: X ⊢ u=v:A, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
guard: {T}, 
cc-snd: q, 
interval-type: 𝕀, 
cc-fst: p, 
csm-ap-type: (AF)s, 
constant-cubical-type: (X), 
uimplies: b supposing a, 
composition-structure: Gamma ⊢ Compositon(A), 
all: ∀x:A. B[x], 
composition-function: composition-function{j:l,i:l}(Gamma;A), 
uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp), 
csm-ap-term: (t)s, 
pi1: fst(t), 
pi2: snd(t), 
csm-id: 1(X), 
interval-0: 0(𝕀), 
csm-id-adjoin: [u], 
interval-1: 1(𝕀), 
cubical-type: {X ⊢ _}, 
pres-a0: pres-a0(G;f;t0), 
pres-c1: pres-c1(G;phi;f;t;t0;cA), 
csm-ap: (s)x, 
compose: f o g, 
csm-adjoin: (s;u), 
csm-comp-structure: (cA)tau, 
csm-comp: G o F, 
csm+: tau+, 
true: True, 
btrue: tt, 
bfalse: ff, 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
record-update: r[x := v], 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
face-lattice: face-lattice(T;eq), 
face_lattice: face_lattice(I), 
record-select: r.x, 
lattice-point: Point(l), 
face-presheaf: 𝔽, 
functor-ob: ob(F), 
I_cube: A(I), 
face-type: 𝔽, 
cubical-type-at: A(a), 
so_apply: x[s], 
and: P ∧ Q, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
bdd-distributive-lattice: BoundedDistributiveLattice, 
cubical-term-at: u(a), 
face-or: (a ∨ b), 
face-one: (i=1), 
squash: ↓T, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
presw: presw(G;phi;f;t;t0;cT), 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}, 
same-cubical-type: Gamma ⊢ A = B, 
cube_set_map: A ⟶ B, 
psc_map: A ⟶ B, 
nat-trans: nat-trans(C;D;F;G), 
cat-ob: cat-ob(C), 
op-cat: op-cat(C), 
spreadn: spread4, 
cube-cat: CubeCat, 
fset: fset(T), 
quotient: x,y:A//B[x; y], 
cat-arrow: cat-arrow(C), 
type-cat: TypeCat, 
names-hom: I ⟶ J, 
cat-comp: cat-comp(C), 
cube-context-adjoin: X.A, 
context-subset: Gamma, phi, 
cc-adjoin-cube: (v;u), 
partial-term-0: u[0], 
face-term-implies: Gamma ⊢ (phi ⇒ psi)
Lemmas referenced : 
csm+_wf, 
interval-type_wf, 
cc-fst_wf_interval, 
csm-interval-type, 
context-subset-term-subtype, 
cube-context-adjoin_wf, 
cubical-fun_wf, 
csm-ap-term_wf, 
face-type_wf, 
csm-face-type, 
cubical-app_wf_fun, 
thin-context-subset, 
cubical-fun-subset, 
subset-cubical-term, 
context-subset_wf, 
face-or_wf, 
face-one_wf, 
cc-snd_wf, 
sub_cubical_set-cumulativity1, 
sub_cubical_set_functionality, 
context-subset-is-subset, 
csm-ap-type_wf, 
cubical_set_cumulativity-i-j, 
composition-structure_wf, 
csm-id-adjoin_wf, 
interval-0_wf, 
partial-term-0_wf, 
constrained-cubical-term-eqcd, 
istype-cubical-term, 
cubical-type_wf, 
cubical_set_wf, 
interval-1_wf, 
presw_wf, 
composition-function-cumulativity, 
pres-a0-constraint, 
cubical-type-cumulativity2, 
subtype_rel_self, 
csm-comp-structure_wf, 
csm-comp_term, 
csm+_wf_interval, 
csm-comp-structure-composition-function, 
comp_term_wf, 
csm-face-or, 
cubical-term-equal, 
nat_wf, 
fset_wf, 
I_cube_wf, 
bdd-distributive-lattice-subtype-bdd-lattice, 
lattice-join-0, 
lattice-join_wf, 
lattice-meet_wf, 
equal_wf, 
lattice-point_wf, 
bounded-lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
lattice-axioms_wf, 
lattice-structure_wf, 
bounded-lattice-structure_wf, 
subtype_rel_set, 
face_lattice_wf, 
cubical-term-at_wf, 
cubical-type-at_wf_face-type, 
csm_id_adjoin_fst_term_lemma, 
squash_wf, 
true_wf, 
istype-universe, 
dM-to-FL-dM0, 
iff_weakening_equal, 
pres-v_wf, 
csm-cubical-app, 
csm-id-adjoin_wf-interval-1, 
cubical-term-eqcd, 
csm-cubical-fun, 
face-term-implies-same, 
csm-ap-id-term, 
face-term-implies_wf, 
csm-ap-term-wf-subset, 
composition-function_wf, 
thin-context-subset-adjoin, 
csm-id-adjoin_wf-interval-0, 
constrained-cubical-term_wf, 
cube_set_map_wf, 
cube_set_map_cumulativity-i-j, 
csm-comp-assoc, 
csm-comp_wf, 
csm-id-comp, 
csm+-id, 
csm-id_wf, 
csm+-comp-csm+-interval, 
cc-fst-csm-adjoin, 
context-adjoin-subset4, 
I_cube_pair_redex_lemma, 
cc-adjoin-cube_wf, 
pres-a0_wf, 
csm-comp-term, 
csm-context-subset-subtype2, 
subset-cubical-type, 
lattice-1_wf, 
csm-ap-id-type, 
sub_cubical_set_self, 
subset-cubical-term2
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
hypothesis, 
Error :memTop, 
applyEquality, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
universeIsType, 
setElimination, 
rename, 
dependent_functionElimination, 
lambdaEquality_alt, 
cumulativity, 
universeEquality, 
productElimination, 
functionExtensionality, 
natural_numberEquality, 
isectEquality, 
productEquality, 
imageElimination, 
inhabitedIsType, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
equalityIstype, 
lambdaFormation_alt, 
hyp_replacement, 
applyLambdaEquality, 
dependent_set_memberEquality_alt
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[phi:\{G  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A,T:\{G.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[f:\{G.\mBbbI{}  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].  \mforall{}[t:\{G.\mBbbI{},  (phi)p  \mvdash{}  \_:T\}].
\mforall{}[t0:\{G  \mvdash{}  \_:(T)[0(\mBbbI{})][phi  |{}\mrightarrow{}  t[0]]\}].  \mforall{}[cT:G.\mBbbI{}  +\mvdash{}  Compositon(T)].  \mforall{}[cA:G.\mBbbI{}  \mvdash{}  Compositon(A)].
    G  \mvdash{}  (comp  (cA)p+  [((phi)p  \mvee{}  (q=1))  \mvdash{}\mrightarrow{}  (presw(G;phi;f;t;t0;cT))p+]
                      (pres-a0(G;f;t0))p)[0(\mBbbI{})]=pres-c1(G;phi;f;t;t0;cA):(A)[1(\mBbbI{})]
Date html generated:
2020_05_20-PM-05_28_50
Last ObjectModification:
2020_05_02-PM-03_33_55
Theory : cubical!type!theory
Home
Index