Nuprl Lemma : pres-a0-constraint

[G:j⊢]. ∀[phi:{G ⊢ _:𝔽}]. ∀[A,T:{G.𝕀 ⊢ _}]. ∀[f:{G.𝕀 ⊢ _:(T ⟶ A)}]. ∀[t:{G.𝕀(phi)p ⊢ _:T}].
[t0:{G ⊢ _:(T)[0(𝕀)][phi |⟶ t[0]]}]. ∀[cT:G.𝕀 +⊢ Compositon(T)].
  ((pres-a0(G;f;t0))p ∈ {G.𝕀 ⊢ _:((A)p+)[0(𝕀)][((phi)p ∨ (q=1)) |⟶ ((presw(G;phi;f;t;t0;cT))p+)[0(𝕀)]]})


Proof




Definitions occuring in Statement :  presw: presw(G;phi;f;t;t0;cT) pres-a0: pres-a0(G;f;t0) composition-structure: Gamma ⊢ Compositon(A) partial-term-0: u[0] constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-one: (i=1) face-or: (a ∨ b) face-type: 𝔽 interval-0: 0(𝕀) interval-type: 𝕀 cubical-fun: (A ⟶ B) csm+: tau+ csm-id-adjoin: [u] cc-snd: q cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B guard: {T} cc-snd: q interval-type: 𝕀 cc-fst: p csm-ap-type: (AF)s constant-cubical-type: (X) uimplies: supposing a composition-structure: Gamma ⊢ Compositon(A) all: x:A. B[x] constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} true: True squash: T prop: iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q cubical-type: {X ⊢ _} interval-0: 0(𝕀) csm-id-adjoin: [u] csm+: tau+ csm-ap: (s)x csm-id: 1(X) csm-adjoin: (s;u) csm-comp: F pi2: snd(t) compose: g pi1: fst(t) csm-ap-term: (t)s same-cubical-term: X ⊢ u=v:A pres-a0: pres-a0(G;f;t0) presw: presw(G;phi;f;t;t0;cT) pres-v: pres-v(G;phi;t;t0;cT)
Lemmas referenced :  csm+_wf interval-type_wf cc-fst_wf_interval csm-interval-type context-subset-term-subtype cube-context-adjoin_wf cubical-fun_wf csm-ap-term_wf face-type_wf csm-face-type cubical-app_wf_fun thin-context-subset cubical-fun-subset subset-cubical-term context-subset_wf face-or_wf face-one_wf cc-snd_wf sub_cubical_set-cumulativity1 sub_cubical_set_functionality context-subset-is-subset csm-ap-type_wf cubical_set_cumulativity-i-j csm-id-adjoin_wf interval-1_wf presw_wf composition-function-cumulativity constrained-cubical-term-eqcd composition-structure_wf interval-0_wf partial-term-0_wf istype-cubical-term cubical-type_wf cubical_set_wf cubical-term-eqcd csm-comp-type equal_wf squash_wf true_wf istype-universe cube_set_map_wf cc-fst+-comp-0 subtype_rel_self iff_weakening_equal pres-a0_wf csm-same-cubical-term csm-cubical-app csm-cubical-fun fill_term_0 csm-id-adjoin_wf-interval-0 csm-context-subset-subtype2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality hypothesis sqequalRule Error :memTop,  applyEquality instantiate equalityTransitivity equalitySymmetry independent_isectElimination setElimination rename dependent_functionElimination lambdaEquality_alt cumulativity universeIsType universeEquality dependent_set_memberEquality_alt hyp_replacement natural_numberEquality imageElimination inhabitedIsType imageMemberEquality baseClosed productElimination independent_functionElimination applyLambdaEquality equalityIstype lambdaFormation_alt

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[phi:\{G  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A,T:\{G.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[f:\{G.\mBbbI{}  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].  \mforall{}[t:\{G.\mBbbI{},  (phi)p  \mvdash{}  \_:T\}].
\mforall{}[t0:\{G  \mvdash{}  \_:(T)[0(\mBbbI{})][phi  |{}\mrightarrow{}  t[0]]\}].  \mforall{}[cT:G.\mBbbI{}  +\mvdash{}  Compositon(T)].
    ((pres-a0(G;f;t0))p  \mmember{}  \{G.\mBbbI{}  \mvdash{}  \_:((A)p+)[0(\mBbbI{})][((phi)p  \mvee{}  (q=1)) 
                                                                  |{}\mrightarrow{}  ((presw(G;phi;f;t;t0;cT))p+)[0(\mBbbI{})]]\})



Date html generated: 2020_05_20-PM-05_27_51
Last ObjectModification: 2020_05_02-PM-03_33_14

Theory : cubical!type!theory


Home Index