Nuprl Lemma : pres-a0-constraint
∀[G:j⊢]. ∀[phi:{G ⊢ _:𝔽}]. ∀[A,T:{G.𝕀 ⊢ _}]. ∀[f:{G.𝕀 ⊢ _:(T ⟶ A)}]. ∀[t:{G.𝕀, (phi)p ⊢ _:T}].
∀[t0:{G ⊢ _:(T)[0(𝕀)][phi |⟶ t[0]]}]. ∀[cT:G.𝕀 +⊢ Compositon(T)].
  ((pres-a0(G;f;t0))p ∈ {G.𝕀 ⊢ _:((A)p+)[0(𝕀)][((phi)p ∨ (q=1)) |⟶ ((presw(G;phi;f;t;t0;cT))p+)[0(𝕀)]]})
Proof
Definitions occuring in Statement : 
presw: presw(G;phi;f;t;t0;cT)
, 
pres-a0: pres-a0(G;f;t0)
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
partial-term-0: u[0]
, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
, 
context-subset: Gamma, phi
, 
face-one: (i=1)
, 
face-or: (a ∨ b)
, 
face-type: 𝔽
, 
interval-0: 0(𝕀)
, 
interval-type: 𝕀
, 
cubical-fun: (A ⟶ B)
, 
csm+: tau+
, 
csm-id-adjoin: [u]
, 
cc-snd: q
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
cc-snd: q
, 
interval-type: 𝕀
, 
cc-fst: p
, 
csm-ap-type: (AF)s
, 
constant-cubical-type: (X)
, 
uimplies: b supposing a
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
all: ∀x:A. B[x]
, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
, 
true: True
, 
squash: ↓T
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
cubical-type: {X ⊢ _}
, 
interval-0: 0(𝕀)
, 
csm-id-adjoin: [u]
, 
csm+: tau+
, 
csm-ap: (s)x
, 
csm-id: 1(X)
, 
csm-adjoin: (s;u)
, 
csm-comp: G o F
, 
pi2: snd(t)
, 
compose: f o g
, 
pi1: fst(t)
, 
csm-ap-term: (t)s
, 
same-cubical-term: X ⊢ u=v:A
, 
pres-a0: pres-a0(G;f;t0)
, 
presw: presw(G;phi;f;t;t0;cT)
, 
pres-v: pres-v(G;phi;t;t0;cT)
Lemmas referenced : 
csm+_wf, 
interval-type_wf, 
cc-fst_wf_interval, 
csm-interval-type, 
context-subset-term-subtype, 
cube-context-adjoin_wf, 
cubical-fun_wf, 
csm-ap-term_wf, 
face-type_wf, 
csm-face-type, 
cubical-app_wf_fun, 
thin-context-subset, 
cubical-fun-subset, 
subset-cubical-term, 
context-subset_wf, 
face-or_wf, 
face-one_wf, 
cc-snd_wf, 
sub_cubical_set-cumulativity1, 
sub_cubical_set_functionality, 
context-subset-is-subset, 
csm-ap-type_wf, 
cubical_set_cumulativity-i-j, 
csm-id-adjoin_wf, 
interval-1_wf, 
presw_wf, 
composition-function-cumulativity, 
constrained-cubical-term-eqcd, 
composition-structure_wf, 
interval-0_wf, 
partial-term-0_wf, 
istype-cubical-term, 
cubical-type_wf, 
cubical_set_wf, 
cubical-term-eqcd, 
csm-comp-type, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
cube_set_map_wf, 
cc-fst+-comp-0, 
subtype_rel_self, 
iff_weakening_equal, 
pres-a0_wf, 
csm-same-cubical-term, 
csm-cubical-app, 
csm-cubical-fun, 
fill_term_0, 
csm-id-adjoin_wf-interval-0, 
csm-context-subset-subtype2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
Error :memTop, 
applyEquality, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
setElimination, 
rename, 
dependent_functionElimination, 
lambdaEquality_alt, 
cumulativity, 
universeIsType, 
universeEquality, 
dependent_set_memberEquality_alt, 
hyp_replacement, 
natural_numberEquality, 
imageElimination, 
inhabitedIsType, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination, 
applyLambdaEquality, 
equalityIstype, 
lambdaFormation_alt
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[phi:\{G  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A,T:\{G.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[f:\{G.\mBbbI{}  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].  \mforall{}[t:\{G.\mBbbI{},  (phi)p  \mvdash{}  \_:T\}].
\mforall{}[t0:\{G  \mvdash{}  \_:(T)[0(\mBbbI{})][phi  |{}\mrightarrow{}  t[0]]\}].  \mforall{}[cT:G.\mBbbI{}  +\mvdash{}  Compositon(T)].
    ((pres-a0(G;f;t0))p  \mmember{}  \{G.\mBbbI{}  \mvdash{}  \_:((A)p+)[0(\mBbbI{})][((phi)p  \mvee{}  (q=1)) 
                                                                  |{}\mrightarrow{}  ((presw(G;phi;f;t;t0;cT))p+)[0(\mBbbI{})]]\})
Date html generated:
2020_05_20-PM-05_27_51
Last ObjectModification:
2020_05_02-PM-03_33_14
Theory : cubical!type!theory
Home
Index