Nuprl Lemma : presw-pres-c2
∀[G:j⊢]. ∀[phi:{G ⊢ _:𝔽}]. ∀[A,T:{G.𝕀 ⊢ _}]. ∀[f:{G.𝕀 ⊢ _:(T ⟶ A)}]. ∀[t:{G.𝕀, (phi)p ⊢ _:T}].
∀[t0:{G ⊢ _:(T)[0(𝕀)][phi |⟶ t[0]]}]. ∀[cT:G.𝕀 ⊢ Compositon(T)].
  ((((presw(G;phi;f;t;t0;cT))p+)[1(𝕀)])[1(𝕀)] = pres-c2(G;phi;f;t;t0;cT) ∈ {G ⊢ _:(A)[1(𝕀)]})
Proof
Definitions occuring in Statement : 
presw: presw(G;phi;f;t;t0;cT), 
pres-c2: pres-c2(G;phi;f;t;t0;cT), 
composition-structure: Gamma ⊢ Compositon(A), 
partial-term-0: u[0], 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}, 
context-subset: Gamma, phi, 
face-type: 𝔽, 
interval-1: 1(𝕀), 
interval-0: 0(𝕀), 
interval-type: 𝕀, 
cubical-fun: (A ⟶ B), 
csm+: tau+, 
csm-id-adjoin: [u], 
cc-fst: p, 
cube-context-adjoin: X.A, 
csm-ap-term: (t)s, 
cubical-term: {X ⊢ _:A}, 
csm-ap-type: (AF)s, 
cubical-type: {X ⊢ _}, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
interval-1: 1(𝕀), 
csm-id-adjoin: [u], 
csm-ap-term: (t)s, 
cc-fst: p, 
interval-type: 𝕀, 
csm+: tau+, 
csm-id: 1(X), 
csm-adjoin: (s;u), 
csm-ap: (s)x, 
constant-cubical-type: (X), 
cc-snd: q, 
csm-ap-type: (AF)s, 
csm-comp: G o F, 
pi2: snd(t), 
compose: f o g, 
pi1: fst(t), 
pres-c2: pres-c2(G;phi;f;t;t0;cT), 
presw: presw(G;phi;f;t;t0;cT), 
member: t ∈ T, 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
implies: P ⇒ Q, 
guard: {T}, 
pres-v: pres-v(G;phi;t;t0;cT), 
prop: ℙ, 
composition-structure: Gamma ⊢ Compositon(A), 
squash: ↓T, 
partial-term-0: u[0]
Lemmas referenced : 
csm-cubical-app, 
csm-cubical-fun, 
cube-context-adjoin_wf, 
interval-type_wf, 
csm-id-adjoin_wf, 
interval-1_wf, 
cubical-term-eqcd, 
csm-ap-term_wf, 
cubical-fun_wf, 
csm-id-adjoin_wf-interval-1, 
composition-structure_wf, 
constrained-cubical-term_wf, 
csm-ap-type_wf, 
csm-id-adjoin_wf-interval-0, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
partial-term-0_wf, 
istype-cubical-term, 
context-subset_wf, 
face-type_wf, 
csm-face-type, 
cc-fst_wf_interval, 
thin-context-subset, 
cubical-type_wf, 
cubical_set_wf, 
fill_term_1, 
cubical-app_wf_fun, 
comp_term_wf, 
subset-cubical-term, 
context-adjoin-subset4, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
Error :memTop, 
hypothesis, 
dependent_functionElimination, 
instantiate, 
hypothesisEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
applyEquality, 
lambdaEquality_alt, 
cumulativity, 
universeIsType, 
universeEquality, 
hyp_replacement, 
inhabitedIsType, 
lambdaFormation_alt, 
equalityIstype, 
independent_functionElimination, 
applyLambdaEquality, 
setElimination, 
rename, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[phi:\{G  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A,T:\{G.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[f:\{G.\mBbbI{}  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].  \mforall{}[t:\{G.\mBbbI{},  (phi)p  \mvdash{}  \_:T\}].
\mforall{}[t0:\{G  \mvdash{}  \_:(T)[0(\mBbbI{})][phi  |{}\mrightarrow{}  t[0]]\}].  \mforall{}[cT:G.\mBbbI{}  \mvdash{}  Compositon(T)].
    ((((presw(G;phi;f;t;t0;cT))p+)[1(\mBbbI{})])[1(\mBbbI{})]  =  pres-c2(G;phi;f;t;t0;cT))
Date html generated:
2020_05_20-PM-05_28_08
Last ObjectModification:
2020_04_18-PM-10_58_47
Theory : cubical!type!theory
Home
Index