Nuprl Lemma : csm-cubical-equiv

[H,K:j⊢]. ∀[tau:K j⟶ H]. ∀[A,E:{H ⊢ _}].  ((Equiv(A;E))tau Equiv((A)tau;(E)tau) ∈ {K ⊢ _})


Proof




Definitions occuring in Statement :  cubical-equiv: Equiv(T;A) csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] cubical-equiv: Equiv(T;A) member: t ∈ T squash: T prop: all: x:A. B[x] subtype_rel: A ⊆B true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q is-cubical-equiv: IsEquiv(T;A;w) csm+: tau+ cube_set_map: A ⟶ B psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) pi1: fst(t) op-cat: op-cat(C) spreadn: spread4 cube-cat: CubeCat fset: fset(T) quotient: x,y:A//B[x; y] cat-arrow: cat-arrow(C) pi2: snd(t) type-cat: TypeCat names-hom: I ⟶ J cat-comp: cat-comp(C) compose: g cubical-type: {X ⊢ _} csm-ap-type: (AF)s cc-fst: p csm-ap: (s)x cc-snd: q csm-comp: F csm-adjoin: (s;u) cubical-fun: (A ⟶ B) csm-ap-term: (t)s
Lemmas referenced :  cubical-type_wf cube_set_map_wf cubical_set_wf equal_wf squash_wf true_wf istype-universe csm-cubical-sigma cubical-fun_wf is-cubical-equiv_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 csm-ap-type_wf cc-fst_wf cc-snd_wf-cubical-fun cubical-sigma_wf subtype_rel_self iff_weakening_equal csm-cubical-fun csm-ap-term_wf cc-snd_wf cubical-term_wf cubical-fun-p csm-cubical-pi csm+_wf contractible-type_wf cubical-fiber_wf subset-cubical-type sub_cubical_set_self cubical-pi_wf subtype_rel-equal csm-contractible-type csm-adjoin_wf csm-comp_wf p-csm+-type csm-cubical-fiber
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt because_Cache universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis inhabitedIsType instantiate applyEquality lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry universeEquality dependent_functionElimination sqequalRule natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination hyp_replacement setElimination rename Error :memTop

Latex:
\mforall{}[H,K:j\mvdash{}].  \mforall{}[tau:K  j{}\mrightarrow{}  H].  \mforall{}[A,E:\{H  \mvdash{}  \_\}].    ((Equiv(A;E))tau  =  Equiv((A)tau;(E)tau))



Date html generated: 2020_05_20-PM-03_26_22
Last ObjectModification: 2020_04_07-PM-06_41_37

Theory : cubical!type!theory


Home Index