Nuprl Lemma : csm-cubical-fiber

[X:j⊢]. ∀[T,A:{X ⊢ _}]. ∀[w:{X ⊢ _:(T ⟶ A)}]. ∀[a:{X ⊢ _:A}]. ∀[Z:j⊢]. ∀[s:Z j⟶ X].
  ((Fiber(w;a))s Z ⊢ Fiber((w)s;(a)s) ∈ {Z ⊢ _})


Proof




Definitions occuring in Statement :  cubical-fiber: Fiber(w;a) cubical-fun: (A ⟶ B) csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B squash: T all: x:A. B[x] true: True cubical-fiber: Fiber(w;a) uimplies: supposing a guard: {T} implies:  Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q prop: cube_set_map: A ⟶ B psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) pi1: fst(t) op-cat: op-cat(C) spreadn: spread4 cube-cat: CubeCat fset: fset(T) quotient: x,y:A//B[x; y] cat-arrow: cat-arrow(C) pi2: snd(t) type-cat: TypeCat names-hom: I ⟶ J cat-comp: cat-comp(C) compose: g cubical-type: {X ⊢ _} cc-snd: q csm-ap-type: (AF)s cc-fst: p csm-comp: F csm-ap: (s)x csm-adjoin: (s;u) csm-ap-term: (t)s
Lemmas referenced :  csm-ap-term_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 cubical-fun_wf cc-fst_wf cubical-term_wf csm-cubical-fun csm-ap-type_wf equal_wf cubical-type_wf csm-cubical-sigma path-type_wf cubical-app_wf_fun cc-snd_wf cubical-sigma_wf equal_functionality_wrt_subtype_rel2 iff_weakening_equal cube_set_map_wf cubical_set_wf squash_wf true_wf istype-universe subtype_rel_self csm-ap-comp-type csm-path-type csm-adjoin_wf csm-comp_wf csm-comp-term csm_ap_term_fst_adjoin_lemma csm-ap-comp-term-sq2 csm-ap-cubical-app-fun
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality hypothesis sqequalRule because_Cache lambdaEquality_alt imageElimination dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed equalityTransitivity equalitySymmetry hyp_replacement universeIsType cumulativity independent_isectElimination independent_functionElimination productElimination isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType universeEquality setElimination rename Error :memTop

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[T,A:\{X  \mvdash{}  \_\}].  \mforall{}[w:\{X  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].  \mforall{}[a:\{X  \mvdash{}  \_:A\}].  \mforall{}[Z:j\mvdash{}].  \mforall{}[s:Z  j{}\mrightarrow{}  X].
    ((Fiber(w;a))s  =  Z  \mvdash{}  Fiber((w)s;(a)s))



Date html generated: 2020_05_20-PM-03_23_54
Last ObjectModification: 2020_04_07-PM-05_20_52

Theory : cubical!type!theory


Home Index