Nuprl Lemma : respects-equality-context-subset-term

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[phi:{X ⊢ _:𝔽}].  respects-equality({X ⊢ _:A};{X, phi ⊢ _:A})


Proof




Definitions occuring in Statement :  context-subset: Gamma, phi face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet respects-equality: respects-equality(S;T) uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-term: {X ⊢ _:A} subtype_rel: A ⊆B so_lambda: λ2x.t[x] guard: {T} so_apply: x[s] uimplies: supposing a all: x:A. B[x] implies:  Q prop: respects-equality: respects-equality(S;T)
Lemmas referenced :  respects-equality-set cubical-term_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j fset_wf nat_wf I_cube_wf context-subset_wf cubical-type-at_wf thin-context-subset all_wf names-hom_wf equal_wf cube-set-restriction_wf cubical-type-ap-morph_wf istype-cubical-type-at subset-I_cube context-subset-is-subset subtype-respects-equality subtype_rel_set subtype_rel_dep_function face-type_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality hypothesis functionEquality cumulativity lambdaEquality_alt universeIsType universeEquality because_Cache equalityTransitivity equalitySymmetry inhabitedIsType functionIsType independent_isectElimination dependent_functionElimination independent_functionElimination lambdaFormation_alt axiomEquality functionIsTypeImplies isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[phi:\{X  \mvdash{}  \_:\mBbbF{}\}].    respects-equality(\{X  \mvdash{}  \_:A\};\{X,  phi  \mvdash{}  \_:A\})



Date html generated: 2020_05_20-PM-02_55_36
Last ObjectModification: 2020_04_06-AM-10_24_40

Theory : cubical!type!theory


Home Index