Nuprl Lemma : csm-equiv-term
∀[G:j⊢]. ∀[phi:{G ⊢ _:𝔽}]. ∀[A,T:{G ⊢ _}]. ∀[f:{G ⊢ _:Equiv(T;A)}]. ∀[t:{G, phi ⊢ _:T}]. ∀[a:{G ⊢ _:A}].
∀[c:{G, phi ⊢ _:(Path_A a app(equiv-fun(f); t))}]. ∀[cF:G ⊢ Compositon(Fiber(equiv-fun(f);a))]. ∀[H:j⊢]. ∀[s:H j⟶ G].
  ((equiv f [phi ⊢→ (t,  c)] a)s
  = equiv (f)s [(phi)s ⊢→ ((t)s,  (c)s)] (a)s
  ∈ {H ⊢ _:Fiber(equiv-fun((f)s);(a)s)[(phi)s |⟶ fiber-point((t)s;(c)s)]})
Proof
Definitions occuring in Statement : 
equiv-term: equiv f [phi ⊢→ (t,  c)] a
, 
csm-comp-structure: (cA)tau
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
equiv-fun: equiv-fun(f)
, 
cubical-equiv: Equiv(T;A)
, 
fiber-point: fiber-point(t;c)
, 
cubical-fiber: Fiber(w;a)
, 
path-type: (Path_A a b)
, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
, 
context-subset: Gamma, phi
, 
face-type: 𝔽
, 
cubical-app: app(w; u)
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
equiv-term: equiv f [phi ⊢→ (t,  c)] a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
let: let, 
guard: {T}
, 
cc-snd: q
, 
interval-type: 𝕀
, 
cc-fst: p
, 
csm-ap-type: (AF)s
, 
constant-cubical-type: (X)
, 
cubical-path-app: pth @ r
, 
cubicalpath-app: pth @ r
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
, 
csm+: tau+
, 
csm-comp: G o F
, 
csm-ap-term: (t)s
, 
csm-ap: (s)x
, 
csm-adjoin: (s;u)
, 
pi1: fst(t)
, 
compose: f o g
, 
same-cubical-type: Gamma ⊢ A = B
, 
interval-1: 1(𝕀)
, 
csm-id-adjoin: [u]
, 
csm-id: 1(X)
, 
cubical-type: {X ⊢ _}
, 
cubical-fiber: Fiber(w;a)
, 
cubical-sigma: Σ A B
, 
cc-adjoin-cube: (v;u)
, 
comp_trm: comp_trm, 
csm-comp-structure: (cA)tau
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
pi2: snd(t)
, 
csm-path-ap-q: csm-path-ap-q(H;G;s;t)
, 
interval-0: 0(𝕀)
, 
respects-equality: respects-equality(S;T)
Lemmas referenced : 
cubical-app_wf_fun, 
context-subset_wf, 
thin-context-subset, 
cubical-fun-subset, 
equiv-fun_wf, 
subset-cubical-term, 
context-subset-is-subset, 
cubical-fun_wf, 
equiv-contr_wf, 
cubical-fiber_wf, 
fiber-subset, 
cubical-term-eqcd, 
fiber-point_wf, 
context-subset-term-subtype, 
csm-comp_term, 
csm-ap-type_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
cc-fst_wf_interval, 
csm-comp-structure_wf, 
contr-center_wf, 
contr-path_wf, 
contractible-type-subset, 
contractible-type_wf, 
cube_set_map_wf, 
composition-structure_wf, 
istype-cubical-term, 
path-type_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
cubical-equiv_wf, 
cubical-type_wf, 
face-type_wf, 
cubical_set_wf, 
cubical-path-app_wf, 
csm-ap-term_wf, 
csm-path-type, 
cc-snd_wf, 
cubical-path-app-0, 
cubical-path-ap-id-adjoin, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
csm-ap-id-type, 
subset-cubical-type, 
subtype_rel_self, 
iff_weakening_equal, 
csm_id_adjoin_fst_type_lemma, 
csm-id_wf, 
csm+_wf_interval, 
csm-id-adjoin_wf-interval-1, 
csm-face-type, 
csm-id-adjoin_wf, 
interval-1_wf, 
csm-context-subset-subtype2, 
context-subset-map, 
csm-ap-term-wf-subset, 
face-term-implies-same, 
csm-equiv-fun, 
cubical_type_at_pair_lemma, 
cubical_type_ap_morph_pair_lemma, 
csm-cubical-fiber, 
comp_trm_wf, 
constrained-cubical-term_wf, 
csm-id-adjoin_wf-interval-0, 
thin-context-subset-adjoin, 
composition-function_wf, 
csm+_wf, 
subtype_rel-equal, 
csm-interval-type, 
csm-equiv-contr, 
csm-fiber-point, 
csm-contr-path, 
csm-cubical-path-app, 
csm-path-ap-q_wf, 
cube_set_map_cumulativity-i-j, 
context-adjoin-subset3, 
csm-contr-center, 
interval-0_wf, 
respects-equality-context-subset-term, 
cubical-path-app-1, 
subset-cubical-term2, 
sub_cubical_set_self, 
csm-cubical-fun, 
csm-cubical-equiv
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
sqequalRule, 
Error :memTop, 
applyEquality, 
independent_isectElimination, 
inhabitedIsType, 
lambdaFormation_alt, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality_alt, 
cumulativity, 
universeIsType, 
universeEquality, 
hyp_replacement, 
instantiate, 
equalityIstype, 
dependent_functionElimination, 
independent_functionElimination, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
dependent_set_memberEquality_alt, 
setEquality, 
applyLambdaEquality, 
setElimination
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[phi:\{G  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A,T:\{G  \mvdash{}  \_\}].  \mforall{}[f:\{G  \mvdash{}  \_:Equiv(T;A)\}].  \mforall{}[t:\{G,  phi  \mvdash{}  \_:T\}].
\mforall{}[a:\{G  \mvdash{}  \_:A\}].  \mforall{}[c:\{G,  phi  \mvdash{}  \_:(Path\_A  a  app(equiv-fun(f);  t))\}].
\mforall{}[cF:G  \mvdash{}  Compositon(Fiber(equiv-fun(f);a))].  \mforall{}[H:j\mvdash{}].  \mforall{}[s:H  j{}\mrightarrow{}  G].
    ((equiv  f  [phi  \mvdash{}\mrightarrow{}  (t,    c)]  a)s  =  equiv  (f)s  [(phi)s  \mvdash{}\mrightarrow{}  ((t)s,    (c)s)]  (a)s)
Date html generated:
2020_05_20-PM-05_38_00
Last ObjectModification:
2020_04_18-PM-11_52_57
Theory : cubical!type!theory
Home
Index