Nuprl Lemma : fiber-point_wf
∀[X:j⊢]. ∀[T,A:{X ⊢ _}]. ∀[f:{X ⊢ _:(T ⟶ A)}]. ∀[a:{X ⊢ _:A}]. ∀[t:{X ⊢ _:T}]. ∀[c:{X ⊢ _:(Path_A a app(f; t))}].
  (fiber-point(t;c) ∈ {X ⊢ _:Fiber(f;a)})
Proof
Definitions occuring in Statement : 
fiber-point: fiber-point(t;c)
, 
cubical-fiber: Fiber(w;a)
, 
path-type: (Path_A a b)
, 
cubical-app: app(w; u)
, 
cubical-fun: (A ⟶ B)
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
fiber-point: fiber-point(t;c)
, 
cubical-fiber: Fiber(w;a)
, 
subtype_rel: A ⊆r B
, 
squash: ↓T
, 
all: ∀x:A. B[x]
, 
true: True
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
cubical-pair_wf, 
cubical-term_wf, 
path-type_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
cubical-app_wf_fun, 
cubical-fun_wf, 
cubical-type_wf, 
cubical_set_wf, 
cube-context-adjoin_wf, 
csm-ap-type_wf, 
cc-fst_wf, 
csm-ap-term_wf, 
csm-cubical-fun, 
cc-snd_wf, 
squash_wf, 
true_wf, 
equal_wf, 
istype-universe, 
csm-path-type, 
csm-id-adjoin_wf, 
subtype_rel_self, 
iff_weakening_equal, 
csm_id_adjoin_fst_type_lemma, 
csm-ap-id-type, 
csm_id_adjoin_fst_term_lemma, 
csm-ap-id-term, 
csm-cubical-app, 
cc_snd_csm_id_adjoin_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
instantiate, 
applyEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
because_Cache, 
lambdaEquality_alt, 
imageElimination, 
dependent_functionElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
hyp_replacement, 
lambdaFormation_alt, 
equalityIstype, 
independent_functionElimination, 
universeEquality, 
independent_isectElimination, 
productElimination, 
Error :memTop
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[T,A:\{X  \mvdash{}  \_\}].  \mforall{}[f:\{X  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].  \mforall{}[a:\{X  \mvdash{}  \_:A\}].  \mforall{}[t:\{X  \mvdash{}  \_:T\}].
\mforall{}[c:\{X  \mvdash{}  \_:(Path\_A  a  app(f;  t))\}].
    (fiber-point(t;c)  \mmember{}  \{X  \mvdash{}  \_:Fiber(f;a)\})
Date html generated:
2020_05_20-PM-03_24_07
Last ObjectModification:
2020_04_07-PM-04_06_01
Theory : cubical!type!theory
Home
Index