Nuprl Lemma : fiber-point_wf

[X:j⊢]. ∀[T,A:{X ⊢ _}]. ∀[f:{X ⊢ _:(T ⟶ A)}]. ∀[a:{X ⊢ _:A}]. ∀[t:{X ⊢ _:T}]. ∀[c:{X ⊢ _:(Path_A app(f; t))}].
  (fiber-point(t;c) ∈ {X ⊢ _:Fiber(f;a)})


Proof




Definitions occuring in Statement :  fiber-point: fiber-point(t;c) cubical-fiber: Fiber(w;a) path-type: (Path_A b) cubical-app: app(w; u) cubical-fun: (A ⟶ B) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fiber-point: fiber-point(t;c) cubical-fiber: Fiber(w;a) subtype_rel: A ⊆B squash: T all: x:A. B[x] true: True implies:  Q prop: uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  cubical-pair_wf cubical-term_wf path-type_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j cubical-app_wf_fun cubical-fun_wf cubical-type_wf cubical_set_wf cube-context-adjoin_wf csm-ap-type_wf cc-fst_wf csm-ap-term_wf csm-cubical-fun cc-snd_wf squash_wf true_wf equal_wf istype-universe csm-path-type csm-id-adjoin_wf subtype_rel_self iff_weakening_equal csm_id_adjoin_fst_type_lemma csm-ap-id-type csm_id_adjoin_fst_term_lemma csm-ap-id-term csm-cubical-app cc_snd_csm_id_adjoin_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry universeIsType instantiate applyEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType because_Cache lambdaEquality_alt imageElimination dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed hyp_replacement lambdaFormation_alt equalityIstype independent_functionElimination universeEquality independent_isectElimination productElimination Error :memTop

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[T,A:\{X  \mvdash{}  \_\}].  \mforall{}[f:\{X  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].  \mforall{}[a:\{X  \mvdash{}  \_:A\}].  \mforall{}[t:\{X  \mvdash{}  \_:T\}].
\mforall{}[c:\{X  \mvdash{}  \_:(Path\_A  a  app(f;  t))\}].
    (fiber-point(t;c)  \mmember{}  \{X  \mvdash{}  \_:Fiber(f;a)\})



Date html generated: 2020_05_20-PM-03_24_07
Last ObjectModification: 2020_04_07-PM-04_06_01

Theory : cubical!type!theory


Home Index